2,704
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Interactive effects of zinc oxide nano particles and different light regimes on growth and silymarin biosynthesis in callus cultures of Silybum marianum L.

, , , , , , , , ORCID Icon & show all
Pages 523-535 | Received 19 Oct 2020, Accepted 15 Jun 2021, Published online: 30 Jun 2021

References

  • Prakasham RS, Kumar BS, Kumar YS, et al. Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11. Indian J Microbiol. 2014;54(3):329–336.
  • Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J. 2014;2014:1–8.
  • Ashok B, Hariram N, Siengchin S, et al. Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method. J Bioresour Bioprod. 2020;5(3):180–185.
  • Yorseng K, Siengchin S, Ashok B, et al. Nanocomposite egg shell powder with in situ generated silver nanoparticles using inherent collagen as reducing agent. J Bioresour Bioprod. 2020;5(2):101–107.
  • Khan MA, Khan T, Riaz MS, et al. Plant cell nanomaterials interaction: growth, physiology and secondary metabolism. Comprehensive Analytical Chemistry, Elsevier, USA; 2019. p. 23–54.
  • Ahmad MA, Javed R, Adeel M, et al. Engineered ZnO and CuO nanoparticles ameliorate morphological and biochemical response in tissue culture regenerants of candyleaf (Stevia rebaudiana). Molecules. 2020;25(6):1356.,
  • Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7(3):219–242.
  • Vaseem M, Umar A, Hahn Y-B. ZnO nanoparticles: growth, properties, and applications. Metal oxide nanostructures and their applications. Elsevier, USA. Vol. 5; 2010; p. 1–36.
  • Ramesh P, Rajendran A, Meenakshisundaram M. Green synthesis of zinc oxide nanoparticles using flower extract Cassia auriculata. J Nanosci Nanotechnol. 2014;2:41–45.
  • Abbasi BH, Khan MA, Mahmood T, et al. Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tiss Organ Cult. 2010;101(3):371–376.
  • Sánchez-Sampedro MA, Fernández-Tárrago J, Corchete P. Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol. 2005;119(1):60–69.
  • Post-White J, Ladas EJ, Kelly KM. Advances in the use of milk thistle (Silybum marianum). Integr Cancer Ther. 2007;6(2):104–109.
  • Khan MA, Abbasi BH, Shah NA, et al. Analysis of metabolic variations throughout growth and development of adventitious roots in Silybum marianum L.(milk thistle), a medicinal plant. Plant Cell Tiss Organ Cult. 2015;123(3):501–510.
  • Grant JE, Odlaug BL. Silymarin treatment of obsessive-compulsive spectrum disorders. J Clin Psychopharmacol. 2015;35(3):340–342.
  • Abenavoli L, Izzo AA, Milić N, et al. Milk thistle (Silybum marianum): a concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res. 2018;32(11):2202–2213.
  • Tajmohammadi A, Razavi BM, Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: a review. Phytother Res. 2018;32(10):1933–1949.
  • Khan MA, Abbasi BH, Ahmed N, et al. Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crops Prod. 2013;46:105–110.
  • Nikolić R, Mitić N, Miletić R, et al. Effects of cytokinins on in vitro seed germination and early seedling morphogenesis in Lotus corniculatus L. J Plant Growth Regul. 2006;25(3):187–194.
  • Khan MA, Abbasi BH, Shinwari ZK. Thidiazuron enhanced regeneration and silymarin content in Silybum marianum L. Pak. J. Bot. 2014;46:185–190.
  • Manjkhola S, Dhar U, Joshi M. Organogenesis, embryogenesis, and synthetic seed production in Arnebia euchroma—a critically endangered medicinal plant of the Himalaya. In Vitro Cell Dev Biol – Plant. 2005;41(3):244–248.
  • Rani R, Khan MA, Kayani WK, et al. Metabolic signatures altered by in vitro temperature stress in Ajuga bracteosa Wall. ex. Acta Physiol Plant. 2017;39(4):97.
  • Zoratti L, Karppinen K, Luengo Escobar A, et al. Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci. 2014;5:534.
  • Willson KG, Cox LE, Hart JL, et al. Three-dimensional light structure of an upland Quercus stand post-tornado disturbance. J For Res. 2020;31(1):141–153.
  • Ali A, Mohammad S, Khan MA, et al. Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artif Cells Nanomed Biotechnol. 2019;47(1):715–724.
  • Chang C-C, Yang M-H, Wen H-M, et al. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2020;10(3): 34–39.
  • Sykłowska-Baranek K, Pietrosiuk A, Naliwajski MR, et al. Effect of L-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle) Johnst. In Vitro Cell Dev Biol Plant. 2012;48(5):555–564.
  • Kazmi A, Khan MA, Mohammad S, et al. Elicitation directed growth and production of steviol glycosides in the adventitious roots of Stevia rebaudiana Bertoni. Ind Crops Prod. 2019;139:111530.
  • Khan I, Khan MA, Shehzad MA, et al. Micropropagation and production of health promoting lignans in Linum usitatissimum. Plants. 2020;9(6):728.
  • Rady MR. Plant biotechnology and milk thistle. UK: Springer; 2019. p. 97–147.
  • Tůmová L, Tůma J, Megušar K, et al. Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) gaertn cultures in vitro. Molecules. 2010;15(1):331–340.
  • Khan MA, Ali A, Mohammad S, et al. Iron nano modulated growth and biosynthesis of steviol glycosides in Stevia rebaudiana. Plant Cell Tiss Organ Cult. 2020;142(1):1–10.
  • Jiménez VM, Bangerth F. Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell, Tissue Organ Culture. 2001;67(1):37–46.
  • Adil M, Ren X, Kang DI, et al. Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Mol Biol Rep. 2018;45(6):1919–1927.
  • Soorni J, Kahrizi D. Effect of genotype, explant type and 2, 4-D on cell dedifferentiation and callus induction in cumin (Cuminum cyminum L.) medicinal plant. J App Biotechnol Rep. 2015;2:265–270.
  • Rady M, Saker M, Matter M. In vitro culture, transformation and genetic fidelity of milk thistle. J Genet Eng Biotechnol. 2018;16(2):563–572.
  • Jeeshna MV, Paulsamy S. Evaluation of certain flavonoids of medicinal importance in the wild and micropropagated plants of the endangered medicinal species, Exacum bicolor Roxb. J App Pharm Sci. 2011;1:99.
  • Alharby HF, Metwali EM, Fuller MP, et al. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch Biol Sci. 2016;68(4):723–735.,
  • Javed R, Yucesan B, Zia M, et al. Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech. 2018;20(2):194–201.
  • Jabeen N, Maqbool Q, Bibi T, et al. Optimised synthesis of ZnO-nano-fertiliser through green chemistry: boosted growth dynamics of economically important L. esculentum. IET Nanobiotechnol. 2018;12(4):405–411.
  • Zhai J, Tao X, Pu Y, et al. Core/shell structured ZnO/SiO2 nanoparticles: preparation, characterization and photocatalytic property. Appl Surf Sci. 2010;257(2):393–397.
  • Yoshihara S, Yamamoto K, Nakajima Y, et al. Absorption of zinc ions dissolved from zinc oxide nanoparticles in the tobacco callus improves plant productivity. Plant Cell Tiss Organ Cult. 2019;138(2):377–385.
  • Adil M, Ren X, Jeong BR. Light elicited growth, antioxidant enzymes activities and production of medicinal compounds in callus culture of Cnidium officinale Makino. J Photochem Photobiol B. 2019;196:111509.
  • Bogale A. Micro-propagation of Colocasia esculenta (cv. Bolosso I) from corm and sprout tip explants. J Agric Biotechnol Sustain Dev. 2018;10:147–156.
  • Ali H, Khan MA, Ullah N, et al. Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajuga bracteosa. J Photochem Photobiol B. 2018;183:242–250.
  • Ali M, Abbasi BH. Light-induced fluctuations in biomass accumulation, secondary metabolites production and antioxidant activity in cell suspension cultures of Artemisia absinthium L. J Photochem Photobiol B. 2014;140:223–227.
  • Wang H, Provan GJ, Helliwell K. Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem. 2004;87(2):307–311.
  • Afridi MS, Hashmi SS, Ali GS, et al. Comparative antileishmanial efficacy of the biosynthesised ZnO NPs from genus Verbena. IET Nanobiotechnology. 2018;12:1067–1073.
  • Liang Z, Ma Y, Xu T, et al. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza Bunge hairy roots. PLOS One. 2013;8(9):e72806.
  • Georgekutty R, Seery MK, Pillai SC. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C. 2008;112(35):13563–13570.
  • Khalili M, Hasanloo T, Tabar KSK, et al. Influence of exogenous salicylic acid on flavonolignans and lipoxygenase activity in the hairy root cultures of Silybum marianum. Cell Biol Int. 2009;33(9):988–994.
  • Hasanloo T, Khavari-Nejad R, Majidi E, et al. Flavonolignan production in cell suspension culture of Silybum marianum. Pharm Biol. 2008;46(12):876–882.