2,111
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Differential anti-inflammatory properties of chitosan-based cryogel scaffolds depending on chitosan/gelatin ratio

, ORCID Icon & ORCID Icon
Pages 682-690 | Received 23 Mar 2021, Accepted 24 Nov 2021, Published online: 11 Dec 2021

References

  • Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response. Biotechniques. 2011;51(4):239–254.
  • Demir D, Öfkeli F, Ceylan S, et al. Extraction and characterization of chitin and chitosan from blue crab and synthesis of chitosan cryogel scaffolds. J Turkish Chem Soc Sect A Chem. 2016;3;131-144.
  • Demir D, Ceylan S, Göktürk D, et al. Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scaffolds. Polym Bull. 78, 2211–2226, 202.
  • Bölgen N, Demir D, Yalçın MS, et al. Development of hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. Int J Biol Macromol. 2020;161:1581–1590.
  • Kumar P, Dehiya BS, Sindhu A. Comparative study of chitosan and chitosan–gelatin scaffold for tissue engineering. Int Nano Lett. 2017;7(4):285–290.
  • Nagahama H, Maeda H, Kashiki T, et al. Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym. 2009;76(2):255–260.
  • Martins AM, Alves CM, Kurtis Kasper F, et al. Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. J Mater Chem. 2010;20(9):1638–1645.
  • Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, et al. Chitosan derivatives: Introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers. 2018;10(3):342.
  • Etikala A, Tattan M, Askar H, et al. Effects of NSAIDS on periodontal and dental implant therapy. Compendium; 2019 [cited 2020 Oct 14]. Available from: https://www.aegisdentalnetwork.com/cced/2019/02/effects-of-nsaids-on-periodontal-and-dental-implant-therapy
  • Yaghini J, Abed AM, Izadi M, et al. Effect of short-term steroid use (prednisolone) on bone healing around implants: an experimental study on dogs OHDM- Vol. 16- No.2-April, 2017 .
  • Anderson JM. Inflammatory response to implants. ASAIO Trans. 1988;34(2):101–107.
  • Ericsson I, Persson LG, Berglundh T, et al. Different types of inflammatory reactions in peri-implant soft tissues. J Clin Periodontol. 1995;22(3):255–261.
  • Kzhyshkowska J, Gudima A, Riabov V, et al. Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol. 2015;98(6):953–962.
  • Lechner J, Noumbissi S, von Baehr V. Titanium implants and silent inflammation in jawbone-a critical interplay of dissolved titanium particles and cytokines TNF-α and RANTES/CCL5 on overall health? EPMA J. 2018;9(3):331–343.
  • Wang X, Xu X, Huang H, et al. Interleukin-6 first plays pro- then anti-inflammatory role in early versus late acute renal allograft rejection. Ann Clin Lab Sci. 2013;43(4):389–394.
  • Uehara M, Li X, Sheikhi A, et al. Anti-IL-6 eluting immunomodulatory biomaterials prolong skin allograft survival. Sci Rep. 2019;9(1):1–13.
  • Jordan SC, Choi J, Kim I, et al. Interleukin-6, a cytokine critical to mediation of inflammation, autoimmunity and allograft rejection: therapeutic implications of IL-6 receptor blockade. Transplantation. 2017;101(1):32–44.
  • Ceylan S, Alatepeli B. Evaluation of PVA/chitosan cryogels as potential tissue engineering scaffolds; synthesis, cytotoxicity, and genotoxicity investigations. J Turkish Chem Soc Sect A Chem. 2021;8:69–78.
  • Syverud K, Pettersen SR, Draget K, et al. Controlling the elastic modulus of cellulose nanofibril hydrogels—scaffolds with potential in tissue engineering. Cellulose. 2015;22(1):473–481.
  • Ayaz F. Immunostimulatory and immunomodulatory effects of Nitzschia navis-varingica, Heterocapsa pygmaea and Chrysochromulina alifera whole cell extracts on mammalian macrophage cells. Nat Eng Sci. 2019;4:237–246.
  • Ayaz F, Colak SG, Ocakoglu K. Investigating the immunostimulatory and immunomodulatory effects of cis and trans isomers of ruthenium polypyridyl complexes on the mammalian macrophage‐like cells. ChemistrySelect. 2020;5(37):11648–11653.
  • Rogers ZJ, Bencherif SA. Cryogelation and cryogels. Gels. 2019;5(4):46.
  • Marrazzo P, O’leary C. Repositioning natural antioxidants for therapeutic applications in tissue engineering. Bioengineering. 2020;7(3):104–135.
  • Kartikasari N, Yuliati A, Listiana I, et al. Characteristic of bovine hydroxyapatite-gelatin-chitosan scaffolds as biomaterial candidate for bone tissue engineering. 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES); 2016.
  • Arbez B, Libouban H. Comportement de lignées cellulaires de macrophages et d’ostéoblastes en contact avec le biomatériau β-TCP (phosphate bêta tricalcique). Morphologie. 2017;101(334):154–163.
  • Caires HR, Esteves T, Quelhas P, et al. Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: a comprehensive study with different immune cells. J R Soc Interface. 2016;13(122):20160570.
  • Phillips JM, Kao WJ. Macrophage adhesion on gelatin-based interpenetrating networks grafted with PEGylated RGD. Tissue Eng. 2005;11(5–6):964–973.
  • Zhang X, Chen YR, Zhao YL, et al. Type I collagen or gelatin stimulates mouse peritoneal macrophages to aggregate and produce pro-inflammatory molecules through upregulated ROS levels. Int Immunopharmacol. 2019;76:105845.
  • Peluso G, Petillo O, Ranieri M, et al. Chitosan-mediated stimulation of macrophage function. Biomaterials. 1994;15(15):1215–1220.
  • Noam Eliaz, editor. Degradation of implant materials. New York, NY: Springer LLC; 2012.
  • Elisa Tamariz and Ariadna Rios-Ramírez (June 14th 2013). Biodegradation of Medical Purpose Polymeric Materials and Their Impact on Biocompatibility, Biodegradation - Life of Science, Rolando Chamy and Francisca Rosenkranz, IntechOpen, DOI: https://doi.org/https://doi.org/10.5772/56220
  • Yoon HJ, Moon ME, Park HS, et al. Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem Biophys Res Commun. 2007;358(3):954–959.
  • Kathuria N, Tripathi A, Kar KK, Kumar A. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomater. 2009;5(1):406–418.
  • Razavi M, Qiao Y, Thakor AS. Three-dimensional cryogels for biomedical applications. J Biomed Mater Res A. 2019;107(12):2736–2755.
  • Sultankulov B, Berillo D, Sultankulova K, et al. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules. 2019;9(9):470.