2,657
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Myogenic commitment of human stem cells by myoblasts Co-culture: a static vs. a dynamic approach

, , , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 49-58 | Received 16 Jun 2021, Accepted 01 Feb 2022, Published online: 21 Feb 2022

References

  • Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J Exp Orthop. 2016;3(1):15.
  • Fernandes TL, Pedrinelli A, Hernandez AJ. Muscle injury – physiopathology, diagnosis, treatment and clinical presentation. Rev Bras Ortop. 2011;46(3):247–255.
  • Longo UG, Loppini M, Berton A, et al. Tissue engineered strategies for skeletal muscle injury. Stem Cells Int. 2012;2012:1–9.
  • Qazi TH, Duda GN, Ort MJ, et al. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle. 2019;10(3):501–516.
  • Trucillo E, Bisceglia B, Valdrè G, et al. Growth factor sustained delivery from poly-lactic-co-glycolic acid microcarriers and its mass transfer modeling by finite element in a dynamic and static three-dimensional environment bioengineered with stem cells. Biotechnol Bioeng. 2019;116(7):1777–1794.
  • Ciardulli MC, Marino L, Lamparelli EP, et al. Dose-response tendon-specific markers induction by growth differentiation factor-5 in human bone marrow and umbilical cord mesenchymal stem cells. IJMS. 2020;21(16):5905.
  • Govoni M, Berardi AC, Muscari C, et al. An engineered multiphase three-dimensional microenvironment to ensure the controlled delivery of cyclic strain and human growth differentiation factor 5 for the tenogenic commitment of human bone marrow mesenchymal stem cells. Tissue Eng Part A. 2017;23(15–16):811–822.
  • Ciardulli MC, Marino L, Lovecchio J, et al. Tendon and cytokine marker expression by human bone marrow mesenchymal stem cells in a hyaluronate/Poly-Lactic-Co-Glycolic acid (PLGA)/fibrin Three-Dimensional (3D) scaffold. Cells. 2020;9(5):1268.
  • Witt R, Weigand A, Boos AM, et al. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol. 2017;18(1):15.
  • Beier JP, Bitto FF, Lange C, et al. Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int. 2011;35(4):397–406.
  • Ansari S, Chen C, Xu X, et al. Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. Ann Biomed Eng. 2016;44(6):1908–1920.
  • Gunetti M, Tomasi S, Giammò A, et al. Myogenic potential of whole bone marrow mesenchymal stem cells in vitro and in vivo for usage in urinary incontinence. PLoS One. 2012;7(9):e45538.
  • Sisson TH, Nguyen M-H, Yu B, et al. Urokinase-type plasminogen activator increases hepatocyte growth factor activity required for skeletal muscle regeneration. Blood. 2009;114(24):5052–5061.
  • Miller KJ, Thaloor D, Matteson S, et al. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol. 2000;278(1):C174–C181.
  • Tonkin J, Temmerman L, Sampson RD, et al. Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther. 2015;23(7):1189–1200.
  • Kästner S, Elias MC, Rivera AJ, et al. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem. 2000;48(8):1079–1096.
  • Conte C, Ainaoui N, Delluc-Clavières A, et al. Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. Nucleic Acids Res. 2009;37(16):5267–5278.
  • Scala P, Rehak L, Giudice V, et al. Stem cell and macrophage roles in skeletal muscle regenerative medicine. IJMS. 2021;22(19):10867.
  • Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105(7):2821–2827.
  • Ribeiro A, Laranjeira P, Mendes S, et al. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res. Ther. 2013;4:125.
  • Bach M, Schimmelpfennig C, Stolzing A. Influence of murine mesenchymal stem cells on proliferation, phenotype, vitality, and cytotoxicity of murine Cytokine-Induced killer cells in coculture. PLoS One. 2014;9(2):e88115.
  • Kudlik G, Hegyi B, Czibula Á, et al. Mesenchymal stem cells promote macrophage polarization toward M2b-like cells. Exp Cell Res. 2016;348(1):36–45.
  • El-Sayed M, El-Feky MA, El-Amir MI, et al. Immunomodulatory effect of mesenchymal stem cells: cell origin and cell quality variations. Mol Biol Rep. 2019;46(1):1157–1165.
  • Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–372.
  • Ramasamy R, Fazekasova H, W Lam EF, et al. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83(1):71–76.
  • Carrier RL, Rupnick M, Langer R, et al. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 2002;8(2):175–188.
  • Lovecchio J, Gargiulo P, Vargas Luna JL, et al. A standalone bioreactor system to deliver compressive load under perfusion flow to hBMSC-seeded 3D chitosan-graphene templates. Sci Rep. 2019;9(1):16854.
  • Kim J, Ma T. Perfusion regulation of hMSC microenvironment and osteogenic differentiation in 3D scaffold. Biotechnol Bioeng. 2012;109(1):252–261.
  • Lamparelli EP, Lovecchio J, Ciardulli MC, et al. Chondrogenic commitment of human bone marrow mesenchymal stem cells in a perfused collagen hydrogel functionalized with hTGF-β1-Releasing PLGA microcarrier. Pharmaceutics. 2021;13(3):399.
  • Lovecchio J, Pannella M, Giardino L, et al. A dynamic culture platform enhances the efficiency of the 3D HUVEC-based tube formation assay. Biotechnol Bioeng. 2020;117(3):789–797.
  • Pasini A, Lovecchio J, Cortesi M, Liverani C, Spadazzi C, Mercatali L, Ibrahim T, Giordano E. Perfusion Flow Enhances Viability and Migratory Phenotype in 3D-Cultured Breast Cancer Cells. Ann Biomed. Eng. 2021 Sep;49(9):2103–2113. doi: 10.1007/s10439-021-02727-w. Epub 2021 Feb 4. P MID: 33543395; P MCID: P MC8455496.
  • Han TTY, Walker JT, Grant A, et al. Preconditioning human adipose-derived stromal cells on decellularized adipose tissue scaffolds within a perfusion bioreactor modulates cell phenotype and promotes a pro-regenerative host response. Front Bioeng Biotechnol. 2021;9:642465.
  • Ciardulli MC, Lovecchio J, Scala P, et al. 3D biomimetic scaffold for growth factor controlled delivery: an in-vitro study of tenogenic events on Wharton’s jelly mesenchymal stem cells. Pharmaceutics. 2021;13(9):1448.
  • Agrawal G, Aung A, Varghese S. Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury. Lab Chip. 2017;17(20):3447–3461.
  • Phan DTT, Wang X, Craver BM, et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip. 2017;17(3):511–520.
  • Viswanathan S, Shi Y, Galipeau J, et al. Mesenchymal stem versus stromal cells: international society for cell & gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy. 2019;21(10):1019–1024.
  • Satyavrata Samavedi, Lauren K. Poindexter, Mark Van Dyke and Aaron S. Goldstein. Chapter 7 - Synthetic Biomaterials for Regenerative Medicine Applications, In Regenerative Medicine Applications in Organ Transplantation, edition edited by Giuseppe Orlando, Jan Lerut, Shay Soker and Robert J. Stratta, Academic Press, Boston, 2014. Pages. 81–99, ISBN 9780123985231. https://doi.org/10.1016/B978-0-12-398523-1.00007-0
  • Pasini A, Lovecchio J, Ferretti G, et al. Medium perfusion flow improves osteogenic commitment of human stromal cells. Stem Cells Int. 2019;(2019):1–10.
  • Hellemans J, Mortier G, De Paepe A, et al. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8(2):R19.
  • Suchorska WM, Lach MS, Richter M, et al. Bioimaging: an useful tool to monitor differentiation of human embryonic stem cells into chondrocytes. Ann Biomed Eng. 2016;44(5):1845–1859.
  • de Winter J.C.F. (2013) “Using the Student’s t-test with extremely small sample sizes,” Practical Assessment, Research, and Evaluation: Vol. 18 , Article 10. DOI: https://doi.org/10.7275/e4r6-dj05
  • Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–317.
  • Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect. Biol. 2012;4(2):a008342–a008342.
  • Plotnikov EY, Khryapenkova TG, Vasileva AK, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med. 2008;12(5A):1622–1631.
  • Liu X, Chen W, Zhang C, et al. Co-seeding human endothelial cells with human-induced pluripotent stem cell-derived mesenchymal stem cells on calcium phosphate scaffold enhances osteogenesis and vascularization in rats. Tissue Eng Part A. 2017;23(11–12):546–555.
  • Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: the orchestrators of myogenesis after 30 years of discovery. Exp Biol Med. 2018;243(2):118–128.
  • Shang YC, Zhang C, Wang SH, et al. Activated beta-catenin induces myogenesis and inhibits adipogenesis in BM-derived mesenchymal stromal cells. Cytotherapy. 2007;9(7):667–681.
  • Kozlowska U, Krawczenko A, Futoma K, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019;11(6):347–374.
  • Chen S-E, Jin B, Li Y-P. TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol. 2007;292(5):C1660–C1671.
  • Li Y-P, Schwartz RJ. TNF-alpha regulates early differentiation of C2C12 myoblasts in an autocrine fashion. Faseb J. 2001;15(8):1413–1415.
  • Li Y-P. TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol. 2003;285(2):C370–C376.
  • Zhao Q, Yang ST, Wang JJ, et al. TNF alpha inhibits myogenic differentiation of C2C12 cells through NF-κB activation and impairment of IGF-1 signaling pathway. Biochem Biophys Res Commun. 2015;458(4):790–795.
  • Grabiec K, Tokarska J, Milewska M, et al. Interleukin-1beta stimulates early myogenesis of mouse C2C12 myoblasts: the impact on myogenic regulatory factors, extracellular matrix components, IGF binding proteins and protein kinases. Pol J Vet Sci. 2013;16(2):255–264.
  • Li W, Moylan JS, Chambers MA, et al. Interleukin-1 stimulates catabolism in C2C12 myotubes. Am J Physiol Cell Physiol. 2009;297(3):C706–C714.
  • Deng B, Wehling-Henricks M, Villalta SA, et al. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol. 2012;189(7):3669–3680.
  • Horsley V, Jansen KM, Mills ST, et al. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell. 2003;113(4):483–494.
  • Chang Y-H, Tsai J-N, Chen T-L, et al. Interleukin-4 promotes myogenesis and boosts myocyte insulin efficacy. Mediators Inflamm. 2019;(2019):1–14.