2,472
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Ultra-sonication-enhanced green synthesis of silver nanoparticles using Barleria buxifolia leaf extract and their possible application

ORCID Icon, , , , , & ORCID Icon show all
Pages 177-187 | Received 17 Dec 2021, Accepted 19 May 2022, Published online: 23 Jun 2022

References

  • Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016;9(3):217–227.
  • Rahman AU, Khan AU, Yuan Q, et al. Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4. J Photochem Photobiol B. 2019;193:31–38.
  • Yang B, Yang Z, Wang R, et al. Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni–Zn secondary batteries. J. Mater. Chem A. 2014;2(3):785–791.
  • Bastus NG, Merkoci F, Piella J, et al. Synthesis of highly Mono disperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater. 2014;26(9):2836–2846.
  • Boca SC, Potara M, Gabudean AM, et al. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011;311(2):131–140.
  • Zhang D, Gokce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev. 2017;117(5):3990–4103.
  • Sengan M, Veeramuthu D, Veerappan A. Photosynthesis of silver nanoparticles using Durio zibethinus aqueous extract and its application in catalytic reduction of nitro aromatics, degradation of hazardous dyes and selective colorimetric sensing of mercury ions. Mater. Res. Bull. 2018;100:386–393.
  • Jang SJ, Yang IJ, Tettey CO, et al. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2016;68:430–435.
  • Cheng F, Betts JW, Kelly SM, et al. Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using amino cellulose as a combined reducing and capping reagent. Green Chem. 2013;15(4):989–998.
  • He J, Kunitake T, Nakao A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater. 2003;15(23):4401–4406.
  • Chandran SP, Chaudhary M, Pasricha R, et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog. 2006;22(2):577–583.
  • Mohapatra B, Kuriakose S, Mohapatra S. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract. J. Alloys Compd. J ALLOY COMPD. 2015;637:119–126.
  • Alomar TS, AlMasoud N, Awad MA, et al. An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical applications. Mater Chem Phys. 2020;249:123007.
  • Veisi H, Hemmati S, Shirvani H, et al. Veisi, H, green synthesis and characterization of monodispersed silver nanoparticles obtained using oak fruit bark extract and their antibacterial activity. Appl Organometal Chem. 2016a;30(6):387–391.
  • Feroze N, Arshad B, Younas M, et al. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech. 2020;83(1):72–80.
  • Guilger-Casagrande M, Germano-Costa T, Pasquoto-Stigliani T, et al. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci Rep. 2019;9:14351 https://doi.org/10.1038/s41598-019-50871-0.
  • Ghiuta I, Croitoru C, Kost J, et al. Bacteria-Mediated synthesis of silver and silver chloride nanoparticles and their antimicrobial activity. Appl Sci. 2021;11(7):3134.
  • Korbekandi H, Mohseni S, Mardani Jouneghani R, et al. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol. 2016;44(1):235–239.
  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, et al. Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J Biol Sci. 2019;26(6):1207–1215.
  • Prasad TNVKV, Elumalai EK. Marine algae mediated synthesis of silver nanoparticles using Scaberia agardhü Greville. J Biol Sci. 2013;13(6):566–569.
  • Shaham G, Veisi H, Hekmati M. Silver nanoparticle‐decorated multi walled carbon nanotube/pramipexole nano composite: synthesis, characterization and application as an antibacterial agent, appl. Organomet Chem. 2017;31:37–35.
  • Azizi Z, Pourseyedi S, Khatami M, et al. Stachys lavandulifolia and lathyrus sp. mediated for green synthesis of silver nanoparticles and evaluation its antifungal activity against Dothiorella sarmentorum. J Clust Sci. 2016;27(5):1613–1628.
  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, et al. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357–1361.
  • Das J, Velusamy P. Biogenic synthesis of antifungal silver nanoparticles using aqueous stem extract of banana. Nano Biomed Eng. 2013;5:34–38.
  • Vijayakumar M, Priya K, Nancy FT, et al. Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod. 2013;41:235–240.
  • Dipankar C, Murugan S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B Biointerfaces. 2012;98:112–119.
  • Khodadadi B, Bordbar M, Yeganeh-Faal A, et al. Green synthesis of Ag nanoparticles/clinoptilolite using Vaccinium macrocarpon fruit extract and its excellent catalytic activity for reduction of organic dyes. J Alloys Compd. 2017;719:82–88.
  • Adur AJ, Nandini N, Mayachar KS, et al. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested Parthenium slurry. J Photochem Photobiol B. 2018;183:30–34.
  • Prakash P, Gnanaprakasam P, Emmanuel R, et al. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerfaces. 2013;108:255–259.
  • Ahmed S, Saifullah , Ahmad M, Swami BL, et al. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016;9:1–7.
  • Murugan K, Venus JSE, Panneerselvam C, et al. Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res Int. 2015;22(21):17053–17064.
  • Chung IM, Park I, Seung-Hyun K, et al. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett. 2016;11(1):40.
  • Chander PA, Sri HY, Sravanthi NB, et al. In vitro anthelmintic activity of Barleria buxifolia on Indian adult earthworms and estimation of total flavonoid content, Asian Pac. J. Trop. Dis 2014;4:S233–S235.
  • Chetty KM, Sivaji K, Rao KT. Flowering plants of Chittoor district, Andhra Pradesh, India. Tirupati: Student Offset Printers; 2008; p. 34–35.
  • Tamil Selvi S, Jamuna S, Thekan S, Department of Botany, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu-641029, India, et al. Profiling of bioactive chemical entities in Barleria buxifolia L. using GC-MS analysis–a significant ethno medicinal plant. J Ayu Her Med. 2017;3(2):63–77.
  • Siddiqi KS, Rahman AU, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13(1):1–13.
  • Behera A, Awasthi S. Anticancer, antimicrobial and hemolytic assessment of zinc oxide nanoparticles synthesized from Lagerstroemia indica. Bio Nano Sci. 2021;11(4):1030–1048.
  • Deshmukh AR, Gupta A, Kim BS. Ultrasound assisted green synthesis of silver and iron oxide nanoparticles using fenugreek seed extract and their enhanced antibacterial and antioxidant activities. Biomed Res Int. 2019;2019:1714358. ) 2019.
  • Roni M, Murugan K, Panneerselvam C, et al. Evaluation of leaf aqueous extract and synthesized silver nanoparticles usingNerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res. 2013;112(3):981–990.
  • Al-Shmgani HS, Mohammed WH, Sulaiman GM, et al. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cells Nanomed Biotechnol. 2017;45(6):1–1240.
  • Vanaraj S, Jabastin J, Sathiskumar S, et al. Production and characterization of bio-AuNPs to induce synergistic effect against multidrug resistant bacterial biofilm. J Clust Sci. 2017a;28(1):227–244.
  • Vanaraj S, Keerthana BB, Preethi K. Biosynthesis, characterization of silver nanoparticles using quercetin from Clitoria ternatea L to enhance toxicity against bacterial biofilm. J Inorg Organomet Polym. 2017b;27(5):1412–1422.
  • Stepanovic S, Vukovic D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007;115(8):891–899.
  • Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356.
  • Vivek R, Thangam R, Muthuchelian K, et al. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem. 2012;47(12):2405–2410.
  • Zaheer Z, Rafiuddin . Silver nanoparticles to self-assembled films: green synthesis and characterization. Colloids Surf B. 2012;90:48–52.
  • Pradhan N, Pal A, Pal T. Silver nanoparticle catalysed reduction of aromatic nitro compounds. Colloids Surf A Physicochem Eng. 2002;196(2-3):247–257.
  • Vincent S, Kovendan K, Chandramohan B, et al. Swift Fabrication of Silver Nanoparticles Using Bougainvillea glabra: Potential Against the Japanese Encephalitis Vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). J Clust Sci. 2017;28:37–58.
  • Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60(4):523–530.
  • Awwad AM, Salem NM, Abdeen AO. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind Chem. 2013;4(1):29.
  • Baghbani-Arani F, Movagharnia R, Sharifian A, et al. Photo-catalytic, anti-bacterial, and anti-cancer properties of phyto-mediated synthesis of silver nanoparticles from Artemisia tournefortiana Rchb extract. J Photochem Photobiol B. 2017;173:640–649.
  • Balaji DS, Basavaraja S, Deshpande R, et al. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces. 2009;68(1):88–92.
  • Kharat SN, Mendhulkar VD. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater Sci Eng C. 2016;62:719–724.
  • Saratale RG, Shin HS, Kumar G, et al. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol. 2018;46(1):211–222.
  • Park H-J, Kim H, Cha S, et al. Removal characteristics of engineered nanoparticles by activated sludge. Chemosphere. 2013;92(5):524–528.
  • Ghosh S, Patil S, Ahire M, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomed. 2012;7:483–496.
  • Dakhil AS. Biosynthesis of silver nanoparticle (AgNPs) using lactobacillus and their effects on oxidative stress biomarkers in rats. J King Saud Univ Sci. 2017;29(4):462–467.
  • Satpathy S, Patra A, Ahirwar B, et al. Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S71–S85.
  • Kanipandian N, Kannan S, Ramesh R, et al. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Mater Res Bull. 2014;49:494–502.
  • Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–13619.
  • Kummara S, Patil MB, Uriah T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles: a comparative study. Biomed Pharmacother. 2016;84:10–21.
  • Jadhav K, Deore S, Dhamecha D, et al. Phytosynthesis of silver nanoparticles: characterization, biocompatibility studies, and anticancer activity. ACS Biomater Sci Eng. 2018;4(3):892–899.