9,138
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes

ORCID Icon
Pages 428-440 | Received 18 May 2023, Accepted 07 Aug 2023, Published online: 18 Aug 2023

References

  • Manna S, Wu Y, Wang Y, et al. Probing the mechanism of bupivacaine drug release from multivesicular liposomes. J Control Release. 2019;294:279–287. doi: 10.1016/j.jconrel.2018.12.029.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286.
  • Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169(1-2):112–125. doi: 10.1016/j.jconrel.2013.03.036.
  • Hu CMJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1(2):323–334. doi: 10.4155/tde.10.13.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi: 10.1186/s12951-018-0392-8.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi: 10.1186/1556-276X-8-102.
  • Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68(3):701–787. doi: 10.1124/pr.115.012070.
  • Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–391. doi: 10.3109/21691401.2014.953633.
  • Li J, Wang X, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98. doi: 10.1016/j.ajps.2014.09.004.
  • Drescher S, van Hoogevest P. The phospholipid research center: current research in phospholipids and their use in drug delivery. Pharmaceutics. 2020;12(12):1–36. doi: 10.3390/pharmaceutics12121235.
  • Franzé S, et al. Lyophilization of liposomal formulations: still necessary, still challenging. Pharmaceutics. 2018;10(3):139. doi: 10.3390/pharmaceutics10030139.
  • Olusanya TOB, et al. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907. doi: 10.3390/molecules23040907.
  • Chen W, Duša F, Witos J, et al. Determination of the main phase transition temperature of phospholipids by nanoplasmonic sensing. Sci Rep. 2018;8(1):14815. doi: 10.1038/s41598-018-33107-5.
  • Anderson M, Omri A. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv. 2004;11(1):33–39. doi: 10.1080/10717540490265243.
  • Magarkar A, Dhawan V, Kallinteri P, et al. Cholesterol level affects surface charge of lipid membranes in saline solution. Sci Rep. 2014;4(1):5005. doi: 10.1038/srep05005.
  • Kirby C, Clarke J, Gregoriadis G. Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum. FEBS Lett. 1980;111(2):324–328. doi: 10.1016/0014-5793(80)80819-2.
  • Nakamura Y, Mochida A, Choyke PL, et al. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27(10):2225–2238. doi: 10.1021/acs.bioconjchem.6b00437.
  • Rajani C, Borisa P, Karanwad T, et al. Cancer-targeted chemotherapy: emerging role of the folate anchored dendrimer as drug delivery nanocarrier. Pharmaceut Appl Dendrimer. 2019;2020:151–198.
  • Golombek SK, May J-N, Theek B, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38. doi: 10.1016/j.addr.2018.07.007.
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–284. doi: 10.1016/s0168-3659(99)00248-5.
  • Adesina SK, Holly A, Kramer-Marek G, et al. Polylactide-based paclitaxel-loaded nanoparticles fabricated by dispersion polymerization: characterization, evaluation in cancer cell lines, and preliminary biodistribution studies. J Pharm Sci. 2014;103(8):2546–2555. doi: 10.1002/jps.24061.
  • Cunha CRAd, Silva LCNd, Almeida FJF, et al. Encapsulation into stealth liposomes enhances the antitumor action of recombinant cratylia mollis lectin expressed in Escherichia coli. Front Microbiol. 2016;7:1355. doi: 10.3389/fmicb.2016.01355.
  • Gabizon AA. Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res. 2001;7(2):223–225.
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.
  • Lasic DD. Mechanisms of liposome formation. J Liposome Res. 1995;5(3):431–441. doi: 10.3109/08982109509010233.
  • Gao W, et al. Liposome-like nanostructures for drug delivery. J Mater Chem B. 2013;1(48):6569–6585. doi: 10.1039/C3TB21238F.
  • Rovira-Bru M, Thompson DH, Szleifer I. Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures. Biophys J. 2002;83(5):2419–2439. doi: 10.1016/S0006-3495(02)75255-7.
  • Belfiore L, Saunders DN, Ranson M, et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: challenges and opportunities. J Control Release. 2018;277:1–13. doi: 10.1016/j.jconrel.2018.02.040.
  • Huwyler J, Drewe J, Krähenbühl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine. 2008;3(1):21–29.
  • Monteiro N, Martins A, Reis RL, et al. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11(101):20140459. doi: 10.1098/rsif.2014.0459.
  • Lapinski MM, Castro-Forero A, Greiner AJ, et al. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir. 2007;23, 23(23):11677–11683. doi: 10.1021/la7020963.
  • Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol. 2017;1522:17–22. doi: 10.1007/978-1-4939-6591-5_2.
  • Torres-Flores G, Gonzalez-Horta A, Vega-Cantu YI, et al. Preparation and characterization of liposomal everolimus by thin-film hydration technique. Adv Polym Tech. 2020;2020:1–9. doi: 10.1155/2020/5462949.
  • Sharma M, et al. 2020. Liposome-A comprehensive approach for researchers. In: Catala A and Ahmad U, editors. Molecular pharmacology. IntechOpen. doi: 10.5772/intechopen.93256.
  • Mohan A, Narayanan S, Sethuraman S, et al. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. Biomed Res Int. 2014;2014:424239. doi: 10.1155/2014/424239.
  • Tamam H, Park J, Gadalla HH, et al. Development of liposomal gemcitabine with high drug loading capacity. Mol Pharm. 2019;16(7):2858–2871. doi: 10.1021/acs.molpharmaceut.8b01284.
  • Bulbake U, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. doi: 10.3390/pharmaceutics9020012.
  • Yadav D, Sandeep K, Pandey D, et al. Liposomes for drug delivery. J Biotechnol Biomater. 2017;07(04):1–8. doi: 10.4172/2155-952X.1000276.
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–999. doi: 10.2147/IJN.S68861.
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 2013;8(9):1509–1528. doi: 10.2217/nnm.13.118.
  • Lindner LH, Hossann M. Factors affecting drug release from liposomes. Curr Opin Drug Discov Devel. 2010;13(1):111–123.
  • Ponce A, Wright A, Dewhirst M, et al. Targeted bioavailability of drugs by triggered release from liposomes. Future Lipidology. 2006;1(1):25–34. doi: 10.2217/17460875.1.1.25.
  • Drummond DC, Meyer O, Hong K, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–743.,
  • Jovanović AA, Balanč BD, Ota A, et al. Comparative effects of cholesterol and β-sitosterol on the liposome membrane characteristics. Eur J Lipid Sci Technol. 2018;120(9):1800039. doi: 10.1002/ejlt.201800039.
  • Kaddah S, Khreich N, Kaddah F, et al. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol. 2018;113:40–48. doi: 10.1016/j.fct.2018.01.017.
  • Saito H, Shinoda W. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study. J Phys Chem B. 2011;115(51):15241–15250. doi: 10.1021/jp201611p.
  • Coderch L, Fonollosa J, De Pera M, et al. Influence of cholesterol on liposome fluidity by EPR. Relationship with percutaneous absorption. J Control Release. 2000;68(1):85–95. doi: 10.1016/s0168-3659(00)00240-6.
  • Briuglia M-L, Rotella C, McFarlane A, et al. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231–242. doi: 10.1007/s13346-015-0220-8.
  • Deniz A, Sade A, Severcan F, et al. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep. 2010;30(5):365–373. doi: 10.1042/BSR20090104.
  • Khajeh A, Modarress H. The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer. Biochim Biophys Acta. 2014;1838(10):2431–2438. doi: 10.1016/j.bbamem.2014.05.029.
  • Melzak K, Melzak S, Gizeli E, et al. Cholesterol organization in phosphatidylcholine liposomes: a surface plasmon resonance study. Materials. 2012;5(11):2306–2325. doi: 10.3390/ma5112306.
  • Lombardo D, Calandra P, Barreca D, et al. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials. 2016;6(7):125. doi: 10.3390/nano6070125.
  • Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990;1029(1):91–97. doi: 10.1016/0005-2736(90)90440-y.
  • Loew S, Fahr A, May S. Modeling the release kinetics of poorly water-soluble drug molecules from liposomal nanocarriers. J Drug Deliv. 2011;2011:376548. doi: 10.1155/2011/376548.
  • Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, et al. Nanomedicine review: clinical developments in liposomal applications. Cancer Nano. 2019;10(1):1–40. doi: 10.1186/s12645-019-0055-y.
  • Lee MK. Liposomes for enhanced bioavailability of water-insoluble drugs: in vivo evidence and recent approaches. Pharmaceutics. 2020;12(3):264. doi: 10.3390/pharmaceutics12030264.
  • Peralta MF, Guzmán ML, Pérez AP, et al. Liposomes can both enhance or reduce drugs penetration through the skin. Sci Rep. 2018;8(1):13253. doi: 10.1038/s41598-018-31693-y.
  • Zhang W, Falconer JR, Baguley BC, et al. Improving drug retention in liposomes by aging with the aid of glucose. Int J Pharm. 2016;505(1-2):194–203. doi: 10.1016/j.ijpharm.2016.03.044.
  • Chountoulesi M, Naziris N, Pippa N, et al. The significance of drug-to-lipid ratio to the development of optimized liposomal formulation. J Liposome Res. 2018;28(3):249–258. doi: 10.1080/08982104.2017.1343836.
  • Johnston MJW, Semple SC, Klimuk SK, et al. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta. 2007;1768(5):1121–1127. doi: 10.1016/j.bbamem.2007.01.019.
  • Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(5):. doi: 10.1002/wnan.1450.
  • Sarfraz M, Afzal A, Raza SM, et al. Liposomal co-delivered oleanolic acid attenuates doxorubicininduced multi-organ toxicity in hepatocellular carcinoma. Oncotarget. 2017;8(29):47136–47153. doi: 10.18632/oncotarget.17559.
  • Knepp VM, Hinz RS, Szoka FC, et al. Controlled drug release from a novel liposomal delivery system. I. Investigation of transdermal potential. J Controlled Release. 1987;5(3):211–221. doi: 10.1016/0168-3659(88)90020-X.
  • Suchyta DJ, Schoenfisch MH. Controlled release of nitric oxide from liposomes. ACS Biomater Sci Eng. 2017;3(9):2136–2143. doi: 10.1021/acsbiomaterials.7b00255.
  • Blueschke G, Boico A, Negussie AH, et al. Enhanced drug delivery to the skin using liposomes. Plast Reconstr Surg Glob Open. 2018;6(7):e1739. doi: 10.1097/GOX.0000000000001739.
  • Mazzotta E, Tavano L, Muzzalupo R. Thermo-Sensitive vesicles in controlled drug delivery for chemotherapy. Pharmaceutics. 2018;10(3):150. doi: 10.3390/pharmaceutics10030150.
  • Yuba E. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J Mater Chem B. 2020;8(6):1093–1107. doi: 10.1039/c9tb02470k.
  • Kneidl B, Peller M, Winter G, et al. Thermosensitive liposomal drug delivery systems: state of the art review. Int J Nanomedicine. 2014;9:4387–4398. doi: 10.2147/IJN.S49297.
  • Li L, ten Hagen TLM, Bolkestein M, et al. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release. 2013;167(2):130–137. doi: 10.1016/j.jconrel.2013.01.026.
  • de Matos MBC, Beztsinna N, Heyder C, et al. Thermosensitive liposomes for triggered release of cytotoxic proteins. Eur J Pharm Biopharm. 2018;132:211–221. doi: 10.1016/j.ejpb.2018.09.010.
  • Derieppe M, Escoffre J-M, Denis de Senneville B, et al. Assessment of intratumoral doxorubicin penetration after mild hyperthermia-mediated release from thermosensitive liposomes. Contrast Media Mol Imaging. 2019;2019:2645928. doi: 10.1155/2019/2645928.
  • Nahire R, Hossain R, Patel R, et al. PH-triggered echogenicity and contents release from liposomes. Mol Pharm. 2014;11(11):4059–4068. doi: 10.1021/mp500186a.
  • Kanamala M, Palmer BD, Jamieson SM, et al. Dual pH-sensitive liposomes with low pH-triggered sheddable PEG for enhanced tumor-targeted drug delivery. Nanomedicine (Lond). 2019;14(15):1971–1989. doi: 10.2217/nnm-2018-0510.
  • Ashley JD, Quinlan CJ, Schroeder VA, et al. Dual carfilzomib and doxorubicin-loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol Cancer Ther. 2016;15(7):1452–1459. doi: 10.1158/1535-7163.MCT-15-0867.
  • Miatmoko A, Salim HR, Zahro SM, et al. Dual loading of primaquine and chloroquine into liposome. Eur Pharmaceut J. 2019;66(2):18–25. doi: 10.2478/afpuc-2019-0009.
  • Park H-B, Kim Y-J, Lee S-M, et al. Dual drug-loaded liposomes for synergistic efficacy in MCF-7 breast cancer cells and cancer stem cells. BSL. 2019;25(2):159–169. doi: 10.15616/BSL.2019.25.2.159.
  • Sarfraz M, et al. Development of dual drug loaded nanosized liposomal formulation by a reengineered ethanolic injection method and its pre-clinical pharmacokinetic studies. Pharmaceutics. 2018;10(3):151. doi: 10.3390/pharmaceutics10030151.
  • Sen K, Banerjee S, Mandal M. Dual drug loaded liposome bearing apigenin and 5-fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf B Biointerfaces. 2019;180:9–22. doi: 10.1016/j.colsurfb.2019.04.035.
  • Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv. 2011;8(5):565–580. doi: 10.1517/17425247.2011.566552.
  • Mohammed AR, Weston N, Coombes AGA, et al. Liposome formulation of poorly water-soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int J Pharm. 2004;285(1-2):23–34. doi: 10.1016/j.ijpharm.2004.07.010.
  • Zhang W, Wang G, Falconer JR, et al. Strategies to maximize liposomal drug loading for a poorly water-soluble anticancer drug. Pharm Res. 2015;32(4):1451–1461. doi: 10.1007/s11095-014-1551-8.
  • Mayer LD, Bally MB, Hope MJ, et al. Techniques for encapsulating bioactive agents into liposomes. Chem Phys Lipids. 1986;40(2–4):333–345. doi: 10.1016/0009-3084(86)90077-0.
  • He H, Lu Y, Qi J, et al. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9(1):36–48. doi: 10.1016/j.apsb.2018.06.005.
  • Liu W, Ye A, Liu W, et al. Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. J Dairy Sci. 2013;96(4):2061–2070. doi: 10.3168/jds.2012-6072.
  • Routledge SJ, Linney JA, Goddard AD. Liposomes as models for membrane integrity. Biochem Soc Trans. 2019;47(3):919–932. doi: 10.1042/BST20190123.
  • Taira MC, Chiaramoni NS, Pecuch KM, et al. Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv. 2004;11(2):123–128. doi: 10.1080/10717540490280769.
  • Cullis PR, Mayer LD, Bally MB, et al. Generating and loading of liposomal systems for drug-delivery applications. Adv Drug Deliv Rev. 1989;3(3):267–282. doi: 10.1016/0169-409X(89)90024-0.
  • Hirai M, Kimura R, Takeuchi K, et al. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling. J Synchrotron Radiat. 2013;20(Pt 6):869–874. doi: 10.1107/S0909049513020827.
  • Laouini A, Jaafar-Maalej C, Limayem-Blouza I, et al. Preparation, characterization and applications of liposomes: state of the art. j Coll Sci Biotechnol. 2012;1(2):147–168. doi: 10.1166/jcsb.2012.1020.
  • Pandey H, Rani R, Agarwal V. Liposome and their applications in cancer therapy. Braz. arch. biol. technol. 2016;59(0):16150477. doi: 10.1590/1678-4324-2016150477.
  • Sur S, Fries AC, Kinzler KW, et al. Remote loading of preencapsulated drugs into stealth liposomes. Proc Natl Acad Sci U S A. 2014;111(6):2283–2288. doi: 10.1073/pnas.1324135111.
  • Pauli G, Tang WL, Li SD. Development and characterization of the solvent-assisted active loading technology (SALT) for liposomal loading of poorly water-soluble compounds. Pharmaceutics. 2019;11(9):465. doi: 10.3390/pharmaceutics11090465.
  • Popovska O, et al. An overview: methods for preparation and characterization of liposomes as drug delivery systems. Int J Pharmaceut Phytopharmacol Res. 2013;3(3):182–189.
  • Wehbe M, Malhotra A, Anantha M, et al. A simple passive equilibration method for loading carboplatin into pre-formed liposomes incubated with ethanol as a temperature dependent permeability enhancer. J Control Release. 2017;252:50–61. doi: 10.1016/j.jconrel.2017.03.010.
  • Patel K, Doddapaneni R, Chowdhury N, et al. Tumor stromal disrupting agent enhances the anticancer efficacy of docetaxel loaded PEGylated liposomes in lung cancer. Nanomedicine (Lond). 2016;11(11):1377–1392. doi: 10.2217/nnm.16.37.
  • Kader A, Davis PJ, Kara M, et al. Drug targeting using low density lipoprotein (LDL): physicochemical factors affecting drug loading into LDL particles. J Control Release. 1998;55(2-3):231–243. doi: 10.1016/s0168-3659(98)00052-2.
  • Song M, Wang J, Lei J, et al. Preparation and evaluation of liposomes co-loaded with doxorubicin, phospholipase D inhibitor 5-fluoro-2-indolyl deschlorohalopemide (FIPI) and d-alpha tocopheryl acid succinate (α-TOS) for anti-metastasis. Nanoscale Res Lett. 2019;14(1):138. doi: 10.1186/s11671-019-2964-4.
  • Huang Z, Szoka FC. Sterol-modified phospholipids: cholesterol and phospholipid chimeras with improved biomembrane properties. J Am Chem Soc. 2008;130(46):15702–15712. doi: 10.1021/ja8065557.
  • Park SM, Cha JM, Nam J, et al. Formulation optimization and in vivo proof-of-concept study of thermosensitive liposomes balanced by phospholipid, elastin-like polypeptide, and cholesterol. PLoS One. 2014;9(7):e103116. doi: 10.1371/journal.pone.0103116.
  • Godbole MD, Mathur VB. Selection of phospholipid and method of formulation for optimum entrapment and release of lamivudine from liposome. J Drug Delivery Ther. 2018;8(5-s):175–183. doi: 10.22270/jddt.v8i5-s.1935.
  • Trivedi RV, et al. Influence of egg lecithin composition on physicochemical characteristics of pramipexole liposomes. Int J Res Pharmaceut Sci. 2017;8(1):6–15.
  • Ringhieri P, Avitabile C, Saviano M, et al. The influence of liposomal formulation on the incorporation and retention of PNA oligomers. Colloids Surf B Biointerfaces. 2016;145:462–469. doi: 10.1016/j.colsurfb.2016.05.034.
  • Ali MH, Kirby DJ, Mohammed AR, et al. Solubilisation of drugs within liposomal bilayers: alternatives to cholesterol as a membrane stabilizing agent. J Pharm Pharmacol. 2010;62(11):1646–1655. doi: 10.1111/j.2042-7158.2010.01090.x.
  • Okamoto Y, Taguchi K, Yamasaki K, et al. Albumin-encapsulated liposomes: a novel drug delivery carrier with hydrophobic drugs encapsulated in the inner aqueous core. J Pharm Sci. 2018;107(1):436–445. doi: 10.1016/j.xphs.2017.08.003.
  • Wodlej C, Riedl S, Rinner B, et al. Interaction of two antitumor peptides with membrane lipids – influence of phosphatidylserine and cholesterol on specificity for melanoma cells. PLoS One. 2019;14(1):e0211187. doi: 10.1371/journal.pone.0211187.
  • Di Sotto A, et al. SPC liposomes as possible delivery systems for improving bioavailability of the natural sesquiterpene β-caryophyllene: lamellarity and drug-loading as key features for a rational drug delivery design. Pharmaceutics. 2018;10(4):274. doi: 10.3390/pharmaceutics10040274.
  • El-Hammadi MM, Arias JL. An update on liposomes in drug delivery: a patent review (2014-2018). Expert Opin Ther Pat. 2019;29(11):891–907. doi: 10.1080/13543776.2019.1679767.
  • Nogueira E, Gomes AC, Preto A, et al. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces. 2015;136:514–526. doi: 10.1016/j.colsurfb.2015.09.034.
  • Modi S, Xiang TX, Anderson BD. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. J Control Release. 2012;162(2):330–339. doi: 10.1016/j.jconrel.2012.07.001.
  • Nam JH, Kim SY, Seong H. Investigation on physicochemical characteristics of a nanoliposome-based system for dual drug delivery. Nanoscale Res Lett. 2018;13(1):101. doi: 10.1186/s11671-018-2519-0.
  • Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx. 2005;2(1):99–107. doi: 10.1602/neurorx.2.1.99.
  • Cheung BC, Sun TH, Leenhouts JM, et al. Loading of doxorubicin into liposomes by forming Mn2+-drug complexes. Biochim Biophys Acta. 1998;1414(1-2):205–216. doi: 10.1016/s0005-2736(98)00168-0.
  • Jain A, Gulbake A, Jain A, et al. Dual drug delivery using ‘smart’ liposomes for triggered release of anticancer agents. J Nanopart Res. 2013;15(7):1–12. doi: 10.1007/s11051-013-1772-5.
  • Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23(9):3319–3329. doi: 10.1080/10717544.2016.1177136.
  • Johnston MJW, Edwards K, Karlsson G, et al. Influence of drug-to-lipid ratio on drug release properties and liposome integrity in liposomal doxorubicin formulations. J Liposome Res. 2008;18(2):145–157. doi: 10.1080/08982100802129372.
  • Johnston MJW, Semple SC, Klimuk SK, et al. Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim Biophys Acta. 2006;1758(1):55–64. doi: 10.1016/j.bbamem.2006.01.009.
  • Mao W, Wu F, Lee RJ, et al. Development of a stable single-vial liposomal formulation for vincristine. Int J Nanomedicine. 2019;14:4461–4474. doi: 10.2147/IJN.S205276.
  • Ibrahim S, Tagami T, Ozeki T. Effective-loading of platinum-chloroquine into PEGylated neutral and cationic liposomes as a drug delivery system for resistant malaria parasites. Biol Pharm Bull. 2017;40(6):815–823. doi: 10.1248/bpb.b16-00914.
  • Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metabol Personal Therap. 2019;34(1):20180032. doi: 10.1515/dmpt-2018-0032.
  • Yoon HY, Chang IH, Goo YT, et al. Intravesical delivery of rapamycin via folate-modified liposomes dispersed in thermo-reversible hydrogel. IJN. 2019;ume 14:6249–6268. doi: 10.2147/IJN.S216432.
  • Emamzadeh M, Emamzadeh M, Pasparakis G. Dual controlled delivery of gemcitabine and cisplatin using polymer-modified thermosensitive liposomes for pancreatic cancer. ACS Appl Bio Mater. 2019;2(3):1298–1309. doi: 10.1021/acsabm.9b00007.
  • Pal K, Madamsetty VS, Dutta SK, et al. Co-delivery of everolimus and vinorelbine via a tumor-targeted liposomal formulation inhibits tumor growth and metastasis in RCC. Int J Nanomedicine. 2019;14:5109–5123. doi: 10.2147/IJN.S204221.
  • Jose G, Lu Y-J, Hung J-T, et al. Co-delivery of CPT-11 and 31anobinostat with anti-GD2 antibody conjugated immunoliposomes for targeted combination chemotherapy. Cancers. 2020;12(11):3211. doi: 10.3390/cancers12113211.
  • Affram K, et al. In vitro and in vivo antitumor activity of gemcitabine loaded thermosensitive liposomal nanoparticles and mild hyperthermia in pancreatic cancer. Int J Adv Res. 2015;3(10):859–874.
  • Nsairat H, Alshaer W, Odeh F, et al. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OpenNano. 2023;11:100132. doi: 10.1016/j.onano.2023.100132.
  • Xu Y, Meng H. Paclitaxel-loaded stealth liposomes: development, characterization, pharmacokinetics, and biodistribution. Artif Cells Nanomed Biotechnol. 2016;44(1):350–355. doi: 10.3109/21691401.2014.951722.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48. doi: 10.1016/j.addr.2012.09.037.
  • Calvagno MG, et al. Effects of lipid composition and preparation conditions on physical-chemical properties, technological parameters, and in vitro biological activity of gemcitabine-loaded liposomes. Current Drug Delivery. 2006;4(1):89–101.
  • Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49–60. doi: 10.2147/IJN.S26766.
  • Zhao Y, Alakhova DY, Kim JO, et al. A simple way to enhance doxil® therapy: drug release from liposomes at the tumor site by amphiphilic block copolymer. J Control Release. 2013;168(1):61–69. doi: 10.1016/j.jconrel.2013.02.026.
  • O’Byrne KJ, et al. A phase I dose-escalating study of daunoxome, liposomal daunorubicin, in metastatic breast cancer. Br J Cancer. 2002;87(1):15–20.
  • Salehi B, et al. Liposomal cytarabine as cancer therapy: from chemistry to medicine. Biomolecules. 2019;9(12):773. doi: 10.3390/biom9120773.
  • Batist G, Barton J, Chaikin P, et al. Myocet (liposome-encapsulated doxorubicin citrate): a new approach in breast cancer therapy. Expert Opin Pharmacother. 2002;3(12):1739–1751. doi: 10.1517/14656566.3.12.1739.
  • Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71(3):555–564. doi: 10.1007/s00280-012-2042-4.
  • Adler-Moore J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother. 2002;49 Suppl 1(Suppl. S1):21–30. doi: 10.1093/jac/49.suppl_1.21.
  • Attia MF, Anton N, Wallyn J, et al. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198. doi: 10.1111/jphp.13098.
  • Kan P, Tsao C-W, Wang A-J, et al. A liposomal formulation able to incorporate a high content of paclitaxel and exert promising anticancer effect. J Drug Deliv. 2011;2011:629234. doi: 10.1155/2011/629234.
  • Eleftheriou K, Kaminari A, Panagiotaki KN, et al. A combination drug delivery system employing thermosensitive liposomes for enhanced cell penetration and improved in vitro efficacy. Int J Pharm. 2020;574:118912. doi: 10.1016/j.ijpharm.2019.118912.
  • Kulkarni JA, Cullis PR, van der Meel R, et al. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28(3):146–157. doi: 10.1089/nat.2018.0721.
  • Roberts TC, Langer R, Wood MJA, et al. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–694. doi: 10.1038/s41573-020-0075-7.
  • Andra VVSNL, Pammi SVN, Bhatraju LVKP, et al. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials, and patents. Bionanoscience. 2022;12(1):274–291. doi: 10.1007/s12668-022-00941-x.
  • Mochalova EN, Egorova EA, Komarova KS, et al. Comparative study of nanoparticle blood circulation after forced clearance of own erythrocytes (mononuclear phagocyte system-cytoblockade) or administration of cytotoxic doxorubicin- or clodronate-loaded liposomes. IJMS. 2023;24(13):10623. doi: 10.3390/ijms241310623.