572
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Process-structure-biofunctional paradigm in cellular structured implants: an overview and perspective on the synergy between additive manufacturing, bio-mechanical behaviour and biological functions

ORCID Icon & ORCID Icon
Pages 630-640 | Received 02 Oct 2023, Accepted 29 Oct 2023, Published online: 07 Nov 2023

References

  • Kumar A, Nune KC, Murr LE, et al. Biocompatibility and mechanical behavior of three-dimensional scaffolds for biomedical devices. Int Mater Rev. 2016;62(2):20–45.
  • Vasireddi R, Basu B. Conceptual design of Three-Dimensional scaffolds for bone tissue engineering. Rapid Prototyp J. 2015;21(6):716–724. doi: 10.1108/RPJ-12-2013-0123.
  • Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98:159–161. doi: 10.1136/bjophthalmol-2013-304446.
  • Klammert U, Gbureck U, Vorndran E, et al. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J Cranio-Maxillofac Surg. 2010;38(8):565–570. doi: 10.1016/j.jcms.2010.01.009.
  • Wang J, Yang M, Zhu Y, et al. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv Mater. 2014;26(29):4961–4966.
  • Zhao S, Zhu M, Zhang J, et al. Three dimensionally printed mesoporous bioactive glass and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. J Mater Chem B. 2014;2(36):6106–6118. doi: 10.1039/C4TB00838C.
  • Nune KC, Li SJ, Misra RDK. Advancements in 3D titanium alloy mesh scaffolds. Sci China Mater. 2018;61(4):455–474. doi: 10.1007/s40843-017-9134-x.
  • Murr LE, Gaytan SM, Medina F, et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans A Math Phys Eng Sci. 2010;368(1917):1999–2032. doi: 10.1098/rsta.2010.0010.
  • Liulan L, Huicun AT, Qingxi Z, et al. F. The mechanical properties of bone tissue engineering scaffold fabricating via selective laser sintering. Life Syst Model Simulat. 2007;4689:146–152.
  • Kumar A, Biswas K, Basu B. On the toughness enhancement in hydroxyapatite-based composites. Acta Mater. 2013;61(14):5198–5215. doi: 10.1016/j.actamat.2013.05.013.
  • Kumar A, Biswas K, Basu B. Hydroxyapatite-Titanium bulk composites for bone tissue engineering applications: a review. J Biomed Mater Res-Part A. 2015;103(2):791–806. doi: 10.1002/jbm.a.35198.
  • Wolff J. The law of bone remodelling., Translated by P. Maquet and R. Furlong’, 1986, Heidelberg, Springer-Verlag.
  • Prendergast PJ, Huiskes R. The biomechanics of wolff’s law: recent advances. Ir J Med Sci. 1995;164(2):152–154.
  • Dujovne AR, Bobyn JD, Krygier JJ, et al. Mechanical compatibility of noncemented hip prostheses with the human femur. J Arthroplast. 1993;8(1):7–22. doi: 10.1016/S0883-5403(06)80102-6.
  • Engh CA, Bobyn JD. The infuence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop Relat Res. 1988;231(&NA):7???28. doi: 10.1097/00003086-198806000-00002.
  • Bignon A, Chouteau J, Chevalier J, et al. Effect of micro and macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci Mater Med. 2003;14(12):1089–1097. doi: 10.1023/b:jmsm.0000004006.90399.b4.
  • Pompe W, Worch H, Epple M, et al. Functionally graded materials for biomedical applications. Mater Sci Eng A. 2003;362(1-2):40–60. doi: 10.1016/S0921-5093(03)00580-X.
  • Xigeng M, Dan S. Graded/gradient porous biomaterials. Materials. 2010;3:26–47.
  • Kelly A, Hideo N. Metallic scaffolds for bone regeneration. Materials. 2009;2:790–832.
  • Zhao S, Li SJ, Hou WT, et al. The influence of cell morphology on the compressive behavior of Ti-6Al-4V meshes fabricated by electron beam melting. J Mech Behav Biomed Mater. 2016;59:251–264. doi: 10.1016/j.jmbbm.2016.01.034.
  • Li SJ, Zhao S, Hou WT, et al. Functionally graded Ti-6Al-4V meshes with high strength and energy absorption. Adv Eng Mater. 2016;18(1):34–38. doi: 10.1002/adem.201500086.
  • Wang QS, Li SJ, Hou WT, et al. Mechanistic understanding of Compression-Compression fatigue behavior of functionally graded Ti-6Al-4V mesh structure fabricated by electron beam melting. J Mech Behav Biomed Mater. 2020;103:103590. doi: 10.1016/j.jmbbm.2019.103590.
  • Ren D, Li SJ, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing. J Mater Sci Technol. 2019;35(2):285–294. doi: 10.1016/j.jmst.2018.09.066.
  • Cheng XY, Li SJ, Murr LE, et al. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting. J Mech Behav Biomed Mater. 2012;16:153–162. doi: 10.1016/j.jmbbm.2012.10.005.
  • Li SJ, Xu QS, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method. Acta Biomater. 2014;10(10):4537–4547. doi: 10.1016/j.actbio.2014.06.010.
  • Sun JF, Yang YQ, Wang D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater. Des. 2013;49:545–552. doi: 10.1016/j.matdes.2013.01.038.
  • Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010;3(3):249–259. doi: 10.1016/j.jmbbm.2009.10.006.
  • Niendorf T, Brenne F, Schaper M. Lattice structures manufactured by SLM: on the effect of geometrical dimensions on microstructure evolution during processing. Metall Mater Trans B. 2014;45(4):1181–1185. doi: 10.1007/s11663-014-0086-z.
  • Kadkhodapour J, Montazerian H, Darabi AC, et al. Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J Mech Behav Biomed Mater. 2015;50:180–191. doi: 10.1016/j.jmbbm.2015.06.012.
  • Ahmadi SM, Campoli G, Yavari SA, et al. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed Mater. 2014;34:106–115. doi: 10.1016/j.jmbbm.2014.02.003.
  • Li K, Gao XL, Subhash G. Int. J. Solides. Struct. 42 (2005) 1777–1795. [61] K. Li, X.L. Gao, G. Subhash. J Mech Phys Solids. 2006;54(4):783–806. doi: 10.1016/j.jmps.2005.10.007.
  • Côté F, Deshpande VS, Fleck NA, et al. The compressive and shear responses of corrugated and diamond lattice materials. Int J Solids Struct. 2006;43(20):6220–6242. doi: 10.1016/j.ijsolstr.2005.07.045.
  • Melancon D, Bagheri ZS, Johnston RB, et al. Comp. Mater. Sci. 55 (2012) 1–9. [64] D. Melancon, Z.S. Bagheri, R.B. Johnston, L. Liu, M. Tanzer, D. Pasini. Acta Biomater. 2017;63:350–368. doi: 10.1016/j.actbio.2017.09.013.
  • Zhang LC, Liu YJ, Li SJ, et al. Additive manufacturing of titanium alloys by electron beam melting: a review. Adv Eng Mater. 2018;20(5):1700842. doi: 10.1002/adem.201700842.
  • Yavari SA, Ahmadi SM, Wauthle R, et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater. 2015;43:91–100. doi: 10.1016/j.jmbbm.2014.12.015.
  • Nune KC, Misra RDK, Gaytan SM, et al. Biological response of Next-Generation of 3D Ti-6Al-4V biomedical devices using additive manufacturing of cellular and functional mesh structures. J Biomater Tissue Eng. 2014;4(10):755–771. doi: 10.1166/jbt.2014.1232.
  • Nune KC, Misra RDK, Gaytan SM, et al. Interplay between cellular activity and three‐dimensional scaffold‐cell constructs with different foam structure processed by electron beam melting. J Biomed Mater Res A. 2015;103(5):1677–1692. doi: 10.1002/jbm.a.35307.
  • Nune KC, Kumar A, Misra RDK, et al. Functional response of osteoblasts in functionally gradient Ti-6Al-4V alloy mesh arrays processed by 3D additive manufacturing. Colloids Surf B Biointerfaces. 2017;150:78–88. doi: 10.1016/j.colsurfb.2016.09.050.
  • Ponader S, Vairaktaris E, Heinl P, et al. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. J Biomed Mater Res A. 2008;84(4):1111–1119. doi: 10.1002/jbm.a.31540.
  • Rapuano BE, Lee JJ, MacDonald DE. Titanium alloy surface oxide modulates the conformation of adsorbed fibronectin to enhance its binding to alpha(5) beta(1) integrins in osteoblasts. Eur J Oral Sci. 2012;120(3):185–194. doi: 10.1111/j.1600-0722.2012.954.x.
  • Nune KC, Misra RDK, Li SJ, et al. The functional response of bioactive titania modified three-dimensional Ti-6Al-4V mesh structure toward providing a favorable pathway for intercellular communication and osteoincorporation. J Biomed Mater Res A. 2016;104(10):2488–2501. doi: 10.1002/jbm.a.35789.
  • Nune KC, Misra RDK, Gai X, et al. The role of surface nanotopography on enhanced bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure. J Biomater Appl. 2018;32(8):1032–1048. doi: 10.1177/0885328217748860.
  • Nune KC, Kumar A, Murr LE, et al. Interplay between self‐assembled structure of bone morphogenetic protein‐2 (BMP‐2) and osteoblast functions in three‐dimensional titanium alloy scaffolds: stimulation of osteogenic activity. J Biomed Mater Res A. 2016;104(2):517–532. doi: 10.1002/jbm.a.35592.
  • Kumar A, Nune KC, Misra RDK. Biological functionality and mechanistic contribution of extracellular matrix-ornamented three dimensional Ti-6Al-4V mesh scaffolds. J Biomed Mater Res A. 2016;104(11):2751–2763. doi: 10.1002/jbm.a.35809.
  • Liu H, Li W, Liu C, et al. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti-6Al-4V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth. Biofabrication. 2016;8(4):045012. doi: 10.1088/1758-5090/8/4/045012.
  • Kumar A, Nune KC, Murr LE, et al. Biocompatibility and mechanical behavior of three-dimensional scaffolds for biomedical devices: process-structure-property paradigm. Int Mater Rev. 2016;61(1):20–45. doi: 10.1080/09506608.2015.1128310.
  • Wu BM, Borland SW, Giordano RA, et al. Solid free-form fabrication of drug delivery device. J Controlled Release. 1996;40(1–2):77–87. doi: 10.1016/0168-3659(95)00173-5.
  • Katstra WE, Palazzolo RD, Rowe CW, et al. Oral dosage forms fabricated by three dimensional printing. J Control Release. 2000;66(1):1–9. doi: 10.1016/s0168-3659(99)00225-4.
  • Wu W, Zheng Q, Guo X, et al. The controlled-releasing drug implant based on the three dimensional printing technology: fabrication and properties of drug releasing in vivo. J Wuhan Univ Technol-Mat Sci Edit. 2009;24(6):977–981. doi: 10.1007/s11595-009-6977-1.
  • Yu DG, Zhu LM, Branford-White CJ, et al. Three-Dimensional printing in pharmaceutics: promises and problems. J Pharm Sci. 2008;97(9):3666–3690. doi: 10.1002/jps.21284.
  • Kuboki Y, Jin Q, Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg. 2001;83(1 suppl 2):S1–105-S1-115. doi: 10.2106/00004623-200100002-00005.
  • Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997;121(2):317–324. doi: 10.1093/oxfordjournals.jbchem.a021589.
  • Yarlagadda P, Chandrasekharan M, Shyan J. Recent advances and current developments in tissue scaffolding. Biomed Mater Eng. 2005;15(3):159–177.
  • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389–395. doi: 10.1038/74651.
  • Laschke MW, Harder Y, Amon M, et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 2006;12(8):2093–2104. doi: 10.1089/ten.2006.12.2093.
  • Hutmacher DW, Sittinger M, Risbud M. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004;22:454–462.
  • Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63(4-5):300–311. doi: 10.1016/j.addr.2011.03.004.
  • Liu WF, Chen CS. Engineering biomaterials to control cell function. Mater Today. 2005;8(12):28–35. doi: 10.1016/S1369-7021(05)71222-0.
  • Anderson CR, Ponce AM, Price RJ. Immunohistochemical identification of an extracellular matrix scaffold that microguides capillary sprouting in vivo. J Histochem Cytochem. 2004;52(8):1063–1072. doi: 10.1369/jhc.4A6250.2004.
  • Ochman S, Frey S, Raschke MJ, et al. Local application of VEGF compensates callus deficiency after acute soft tissue trauma-results using a limb‐shortening distraction procedure in rabbit tibia. J Orthop Res. 2011;29(7):1093–1098. doi: 10.1002/jor.21340.