847
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The synchronized feature of Saururus chinensis and gut microbiota against T2DM, NAFLD, obesity and hypertension via integrated pharmacology

, , , , , & ORCID Icon show all
Pages 278-290 | Received 17 Jan 2024, Accepted 26 Apr 2024, Published online: 11 May 2024

References

  • Dharmalingam M, Yamasandhi PG. Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J Endocrinol Metab. 2018;22(3):421–428. doi: 10.4103/IJEM.IJEM_585_17.
  • Alsaadon H, Afroz A, Karim A, et al. Hypertension and its related factors among patients with type 2 diabetes mellitus – a multi-hospital study in Bangladesh. BMC Public Health. 2022;22(1):198. doi: 10.1186/S12889-022-12509-1/TABLES/2.
  • Ng CH, Wong ZY, Chew NWS, et al. Hypertension is prevalent in non-alcoholic fatty liver disease and increases all-cause and cardiovascular mortality. Front Cardiovasc Med. 2022;9:942753. doi: 10.3389/FCVM.2022.942753.
  • Jiang SZ, Lu W, Zong XF, et al. Obesity and hypertension. Exp Ther Med. 2016;12(4):2395–2399. doi: 10.3892/ETM.2016.3667.
  • Hayashi K, Sato K, Ochi S, et al. Inhibitory effects of Saururus chinensis extract on receptor for advanced glycation end-products-dependent inflammation and diabetes-induced dysregulation of vasodilation. Int J Mol Sci. 2022;23(10):5757. doi: 10.3390/IJMS23105757.
  • Fang K, Wu F, Chen G, et al. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC Complement Altern Med. 2019;19(1):255. doi: 10.1186/s12906-019-2671-9.
  • Cai J, Qiong G, Li C, et al. Manassantin B attenuates obesity by inhibiting adipogenesis and lipogenesis in an AMPK dependent manner. FASEB J. 2021;35(5):e21496. doi: 10.1096/FJ.202002126RR.
  • Ryu SY, Oh KS, Kim YS, et al. Antihypertensive, vasorelaxant and inotropic effects of an ethanolic extract of the roots of Saururus chinensis. J Ethnopharmacol. 2008;118(2):284–289. doi: 10.1016/J.JEP.2008.04.011.
  • Song MK, Lee SY, Kim M, et al. Saururus chinensis-controlled allergic pulmonary disease through NF-κB/COX-2 and PGE2 pathways. PeerJ. 2020;8:e10043. doi: 10.7717/PEERJ.10043/SUPP-2.
  • Fabiano GA, Shinn LM, Antunes AEC. Relationship between oat consumption, gut microbiota modulation, and short-chain fatty acid synthesis: an integrative review. Nutrients. 2023;15(16):3534. doi: 10.3390/NU15163534.
  • Vourakis M, Mayer G, Rousseau G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int J Mol Sci. 2021;22(15):8074. doi: 10.3390/IJMS22158074.
  • Oh KK, Gupta H, Min BH, et al. Elucidation of prebiotics, probiotics, postbiotics, and target from gut microbiota to alleviate obesity via network pharmacology study. Cells. 2022;11(18):2903. doi: 10.3390/CELLS11182903/S1.
  • Oh KK, Gupta H, Ganesan R, et al. The seamless integration of dietary plant-derived natural flavonoids and gut microbiota may ameliorate non-alcoholic fatty liver disease: a network pharmacology analysis. Artif Cells Nanomed Biotechnol. 2023;51(1):217–232. doi: 10.1080/21691401.2023.2203734.
  • Oh K, Yoon S, Lee S, et al. The juxtaposition of Ilex cornuta fruit and gut microbiota against alcoholic liver disease based on the integrated pharmacology via metabolomics. Clin Transl Med. 2023;13(9):e1392. doi: 10.1002/CTM2.1392.
  • Oh KK, Choi I, Gupta H, et al. New insight into gut microbiota-derived metabolites to enhance liver regeneration via network pharmacology study. Artif Cells Nanomed Biotechnol. 2023;51(1):1–12. doi: 10.1080/21691401.2022.2155661.
  • Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut–brain communication. Front Endocrinol. 2020;11:25. doi: 10.3389/FENDO.2020.00025.
  • Bang SH, Hyun YJ, Shim J, et al. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-l-rhamnosidase from Bifidobacterium dentium. J Microbiol Biotechnol. 2015;25(1):18–25. doi: 10.4014/JMB.1404.04060.
  • Manach C, Morand C, Demigné C, et al. Bioavailability of rutin and quercetin in rats. FEBS Lett. 1997;409(1):12–16. doi: 10.1016/S0014-5793(97)00467-5.
  • Kwon JE, Lim J, Bang I, et al. Fermentation product with new equol-producing Lactobacillus paracasei as a probiotic-like product candidate for prevention of skin and intestinal disorder. J Sci Food Agric. 2019;99(9):4200–4210. doi: 10.1002/JSFA.9648.
  • Setchell KDR, Clerici C. Equol: pharmacokinetics and biological actions. J Nutr. 2010;140(7):1363S–1368S. doi: 10.3945/JN.109.119784.
  • Jastrząb R, Graczyk D, Siedlecki P. Molecular and cellular mechanisms influenced by postbiotics. Int J Mol Sci. 2021;22(24):13475. doi: 10.3390/IJMS222413475.
  • Oh KK, Yoon SJ, Lee SB, et al. The convergent application of metabolites from Avena sativa and gut microbiota to ameliorate non-alcoholic fatty liver disease: a network pharmacology study. J Transl Med. 2023;21(1):263. doi: 10.1186/s12967-023-04122-6.
  • Zhen Z, Xia L, You H, et al. An integrated gut microbiota and network pharmacology study on Fuzi-Lizhong pill for treating diarrhea-predominant irritable bowel syndrome. Front Pharmacol. 2021;12:746923. doi: 10.3389/FPHAR.2021.746923.
  • Matsson P, Kihlberg J. How big is too big for cell permeability? J Med Chem. 2017;60(5):1662–1664. doi: 10.1021/acs.jmedchem.7b00237.
  • Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007;25(2):197–206. doi: 10.1038/NBT1284.
  • Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–W364. doi: 10.1093/NAR/GKZ382.
  • Soo HC, Chung FFL, Lim KH, et al. Cudraflavone C induces tumor-specific apoptosis in colorectal cancer cells through inhibition of the phosphoinositide 3-kinase (PI3K)-AKT pathway. PLOS One. 2017;12(1):e0170551. doi: 10.1371/JOURNAL.PONE.0170551.
  • Piñero J, Saüch J, Sanz F, et al. The DisGeNET cytoscape app: exploring and visualizing disease genomics data. Comput Struct Biotechnol J. 2021;19:2960–2967. doi: 10.1016/J.CSBJ.2021.05.015.
  • Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Database issue):D514–D517. doi: 10.1093/NAR/GKI033.
  • Zeng Q, Li L, Siu W, et al. A combined molecular biology and network pharmacology approach to investigate the multi-target mechanisms of Chaihu Shugan San on Alzheimer’s disease. Biomed Pharmacother. 2019;120:109370. doi: 10.1016/J.BIOPHA.2019.109370.
  • Zhang L, Shi X, Huang Z, et al. Network pharmacology approach to uncover the mechanism governing the effect of Radix Achyranthis Bidentatae on osteoarthritis. BMC Complement Med Ther. 2020;20(1):121. doi: 10.1186/S12906-020-02909-4/FIGURES/7.
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–D612. doi: 10.1093/NAR/GKAA1074.
  • Shityakov S, Förster C. In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Adv Appl Bioinform Chem. 2014;7:23–36. doi: 10.2147/AABC.S63749.
  • Noureddine O, Gatfaoui S, Brandan SA, et al. Experimental and DFT studies on the molecular structure, spectroscopic properties, and molecular docking of 4-phenylpiperazine-1-ium dihydrogen phosphate. J Mol Struct. 2020;1207:127762. doi: 10.1016/j.molstruc.2020.127762.
  • Gillet VJ, Leach AR. Chemoinformatics. Comprehens Med Chem II. 2007;3:235–264. doi: 10.1016/B0-08-045044-X/00085-7.
  • Iheagwam FN, Rotimi SO. Computer-aided analysis of multiple SARS-CoV-2 therapeutic targets: identification of potent molecules from African medicinal plants. Scientifica. 2020;2020:1878410. doi: 10.1155/2020/1878410.
  • Sethi JK, Hotamisligil GS. Metabolic messengers: tumour necrosis factor. Nat Metab. 2021;3(10):1302–1312. doi: 10.1038/s42255-021-00470-z.
  • Mayo B, Vázquez L, Flórez AB. Equol: a bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients. 2019;11(9):2231. doi: 10.3390/NU11092231.
  • Kang JS, Yoon YD, Han MH, et al. Estrogen receptor-independent inhibition of tumor necrosis factor-α gene expression by phytoestrogen equol is mediated by blocking nuclear factor-κB activation in mouse macrophages. Biochem Pharmacol. 2005;71(1–2):136–143. doi: 10.1016/J.BCP.2005.10.009.
  • Goto T, Kim YI, Furuzono T, et al. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis. Biochem Biophys Res Commun. 2015;459(4):597–603. doi: 10.1016/J.BBRC.2015.02.154.
  • Are A, Aronsson L, Wang S, et al. Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proc Natl Acad Sci U S A. 2008;105(6):1943–1948. doi: 10.1073/PNAS.0711734105.
  • Couvigny B, De Wouters T, Kaci G, et al. Commensal Streptococcus salivarius modulates PPARγ transcriptional activity in human intestinal epithelial cells. PLOS One. 2015;10(5):e0125371. doi: 10.1371/JOURNAL.PONE.0125371.
  • Nepelska M, Cultrone A, Béguet-Crespel F, et al. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells. PLOS One. 2012;7(12):e52869. doi: 10.1371/JOURNAL.PONE.0052869.
  • Giahi L, Aumueller E, Elmadfa I, et al. Regulation of TLR4, p38 MAPkinase, IκB and miRNAs by inactivated strains of lactobacilli in human dendritic cells. Benef Microbes. 2012;3(2):91–98. doi: 10.3920/BM2011.0052.
  • Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605. doi: 10.1038/NM.4102.
  • Shah K, Mujwar S, Gupta JK, et al. Molecular docking and in silico cogitation validate mefenamic acid prodrugs as human cyclooxygenase-2 inhibitor. Assay Drug Dev Technol. 2019;17(6):285–291. doi: 10.1089/ADT.2019.943.
  • Reddy R, Mutyala R, Aparoy P, et al. Computer aided drug design approaches to develop cyclooxygenase based novel anti-inflammatory and anti-cancer drugs. Curr Pharm Des. 2007;13(34):3505–3517. doi: 10.2174/138161207782794275.
  • Shahinozzaman M, Taira N, Ishii T, et al. Anti-inflammatory, anti-diabetic, and anti-Alzheimer’s effects of prenylated flavonoids from Okinawa propolis: an investigation by experimental and computational studies. Molecules. 2018;23(10):2479. doi: 10.3390/MOLECULES23102479.
  • Pearson RG. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci U S A. 1986;83(22):8440–8441. doi: 10.1073/PNAS.83.22.8440.
  • Lucido MJ, Orlando BJ, Vecchio AJ, et al. Crystal structure of aspirin-acetylated human cyclooxygenase-2: insight into the formation of products with reversed stereochemistry. Biochemistry. 2016;55(8):1226–1238. doi: 10.1021/acs.biochem.5b01378.