102,457
Views
494
CrossRef citations to date
0
Altmetric
Articles

Machine learning in manufacturing: advantages, challenges, and applications

, , &
Pages 23-45 | Received 08 Apr 2016, Accepted 18 May 2016, Published online: 24 Jun 2016

References

  • Akay, D. (2011). Grey relational analysis based on instance based learning approach for classification of risks of occupational low back disorders. Safety Science, 49, 1277–1282. doi:10.1016/j.ssci.2011.04.018
  • Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). Cambridge, MA: MIT Press.
  • Apte, C., Weiss, S., & Grout, G. (1993). Predicting defects in disk drive manufacturing: A case study in high dimensional classification. In IEEE Annual Computer Science Conference on Artificial Intelligence in Application (pp. 212–218). Los Alamitos, CA.
  • Azadeh, A., Saberi, M., Kazem, A., Ebrahimipour, V., Nourmohammadzadeh, A., & Saberi, Z. (2013). A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization. Applied Soft Computing, 13, 1478–1485. doi:10.1016/j.asoc.2012.06.020
  • Bar-or, A., Schuster, A., Wolff, R., & Keren, D. (2005). Decision tree induction in high dimensional, hierarchically distributed databases. In Proceedings SI-AM International Data Mining Conference (pp. 466–470). Newport Beach, CA.
  • Ben-hur, A., & Weston, J. (2010). A user’s guide to support vector machines. In Data mining techniques for the life sciences methods in molecular biology (Vol. 609, pp. 223–239). Totowa, NJ: Humana Press. 10.1007/978-1-60327-241-4_13
  • Bishop, C. M. (2006). Pattern recognition and machine learning. New York, NY: Springer.
  • Borin, A., Ferrão, M. F., Mello, C., Maretto, D. A., & Poppi, R. J. (2006). Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta, 579, 25–32. doi:10.1016/j.aca.2006.07.008
  • Breiman, L. (2001). Random forest. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324
  • Brunato, M., & Battiti, R. (2005). Statistical learning theory for location fingerprinting in wireless LANs. Computer Networks, 47, 825–845. doi:10.1016/j.comnet.2004.09.004
  • Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers & Chemistry, 26, 5–14.
  • Carpenter, G. A., & Grossberg, S. (1988). The ART of adaptive pattern recognition by a self-organizing neural network. Computer, 21, 77–88. doi:10.1109/2.33
  • Çaydaş, U., & Ekici, S. (2010). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23, 639–650. doi:10.1007/s10845-010-0415-2
  • Chand, S., & Davis, J. F. (2010, July). What is smart manufacturing? Time Magazine.
  • Cherkassky, V., & Ma, Y. (2009). Another look at statistical learning theory and regularization. Neural Networks, 22, 958–969. doi:10.1016/j.neunet.2009.04.005
  • Chinnam, R. B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal of Production Research, 40, 4449–4466. doi:10.1080/00207540210152920
  • Cohn, D. (2011). Active learning (p. 10). Sammut, C. & Webb, G. I. (Eds.) (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:10.1007/978-0-387-30164-8
  • Cook, D. F., Zobel, C. W., & Wolfe, M. L. (2006). Environmental statistical process control using an augmented neural network classification approach. European Journal of Operational Research, 174, 1631–1642. doi:10.1016/j.ejor.2005.04.035
  • Corne, D., Dhaenens, C., & Jourdan, L. (2012). Synergies between operations research and data mining: The emerging use of multi-objective approaches. European Journal of Operational Research, 221, 469–479. doi:10.1016/j.ejor.2012.03.039
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
  • Davis, J., Edgar, T., Graybill, R., Korambath, P., Schott, B., Swink, D., & Wetzel, J. (2015). Smart manufacturing. Annual Review of Chemical and Biomolecular Engineering, 6, 141–160. doi:10.1146/annurev-chembioeng-061114-123255
  • Dietterich, T. G. (2000). Ensemble methods in machine learning. Proceedings of Multiple Classifier Systems: First International Workshop (MCS) (pp. 1–15). Berlin: Springer. doi:10.1007/3-540-45014-9_1
  • Dingli, D. J. (2012). The manufacturing industry – Coping with challenges (Working Paper No. 2012/05). Maastricht: Maastricht School of Management.
  • Do, T.-N., Lenca, P., Lallich, S., & Pham, N.-K. (2010). Classifying very-high-dimensional data with random forests of oblique decision trees. In F. Guil-let, G. Ritschard, D. Zighed, & H. Briand (Eds.), Advances in knowledge discovery and management (pp. 39–55). Berlin: Springer.
  • Doltsinis, S., Ferreira, P., & Lohse, N. (2012). Reinforcement learning for production ramp-up: A Q-batch learning approach. In 11th International Conference on Machine Learning and Applications (pp. 610–615). Boca Raton, FL: IEEE. doi:10.1109/ICMLA.2012.113
  • Dutt, V., & Gonzalez, C. (2012). Making instance-based learning theory usable and understandable: The instance-based learning tool. Computers in Human Behavior, 28, 1227–1240. doi:10.1016/j.chb.2012.02.006
  • Elangovan, M., Sakthivel, N. R., Saravanamurugan, S., Nair, B. B., & Sugumaran, V. (2015). Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning. Procedia Computer Science, 50, 282–288. doi:10.1016/j.procs.2015.04.04710.1016/j.procs.2015.04.047
  • El-naqa, I., Yang, Y., Wernick, M. N., Galatsanos, N. P., & Nishikawa, R. M. (2002). A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging, 21, 1552–1563. doi:10.1109/TMI.2002.806569
  • European Commission. (2016). Factories for the future. Retrieved from http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html
  • Evgeniou, T., Poggio, T., Pontil, M., & Verri, A. (2002). Regularization and statistical learning theory for data analysis. Computational Statistics & Data Analysis, 38, 421–432. doi:10.1016/S0167-9473(01)00069-X
  • Evgeniou, T., Pontil, M., & Poggio, T. (2000). Statistical learning theory: A primer. International Journal of Computer Vision, 38, 9–13. doi:10.1023/A:1008110632619
  • Filipic, B., & Junkar, M. (2000). Using inductive machine learning to support decision making in machining processes. Computers in Industry, 43, 31–41. doi:10.1016/S0166-3615(00)00056-7
  • Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119–139.
  • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906–914. doi:10.1093/bioinformatics/16.10.906
  • Gagliardi, F. (2011). Instance-based classifiers applied to medical databases: Diagnosis and knowledge extraction. Artificial Intelligence in Medicine, 52, 123–139. doi:10.1016/j.artmed.2011.04.002
  • Gardner, R., & Bicker, J. (2000). Using machine learning to solve tough manufacturing problems. International Journal of Industrial Engineering-Theory Applications and Practice, 7, 359–364.
  • Gonzalez, C., Dutt, V., & Lebiere, C. (2013). Validating instance-based learning mechanisms outside of ACT-R. Journal of Computational Science, 4, 262–268. doi:10.1016/j.jocs.2011.12.001
  • Gordon, J., & Sohal, A. S. (2001). Assessing manufacturing plant competitiveness. International Journal of Operations & Production Management, 21, 233–253.
  • Graham, J. W. (2012). Missing data (p. 322). New York, NY: Springer.
  • Günther, J., Pilarski, P. M., Helfrich, G., Shen, H., & Diepold, K. (2015). First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning. Procedia Technology, 15, 474–483.
  • Guo, X., Sun, L., Li, G., & Wang, S. (2008). A hybrid wavelet analysis and support vector machines in forecasting development of manufacturing. Expert Systems with Applications, 35, 415–422. doi:10.1016/j.eswa.2007.07.052
  • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). A gene selection method for cancer classification using Support Vector Machines. Machine Learning, 46, 389–422. doi:10.1155/2012/586246
  • Hansson, K., Yella, S., Dougherty, M., & Fleyeh, H. (2016). Machine learning algorithms in heavy process manufacturing. American Journal of Intelligent Systems, 6(1), 1–13. doi:10.5923/j.ajis.20160601.01
  • Harding, J. A., Shahbaz, M., & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128, 969–976. doi:10.1115/1.2194554
  • Hickey, R. J., & Martin, R. G. (2001). An instance-based approach to pattern association learning with application to the English past tense verb domain. Knowledge-Based Systems, 14, 131–136. doi:10.1016/S0950-7051(01)00089-2
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735
  • Hoffmann, A. G. (1990, August). General limitations on machine learning. In Proceedings of the 9th European Conference on Artificial Intelligence (pp. 345–347). Stockholm, Sweden.
  • Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37, 543–558. doi:10.1016/S0167-9236(03)00086-1
  • Jain, A. K., Murty, M. N., & Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys, 31, 264–323. doi:10.1145/331499.331504
  • Jurkovic, Z., Cukor, G., Brezocnik, M., & Brajkovic, T. (2016). A comparison of machine learning methods for cutting parameters prediction in high speed turning process. Journal of Intelligent Manufacturing. doi:10.1007/s10845-016-1206-1
  • Kabacoff, R. I. (2011). Advanced methods for missing data. In R. I. Kabacoff (Ed.), R in action: Data analysis and graphics with R (pp. 352–371). Shelter Island, NY: Manning Publications.
  • Kang, P., & Cho, S. (2008). Locally linear reconstruction for instance-based learning. Pattern Recognition, 41, 3507–3518. doi:10.1016/j.patcog.2008.04.009
  • Kang, P., Kim, D., & Cho, S. (2016). Semi-supervised support vector regression based on self-training with label uncertainty: An application to virtual metrology in semiconductor manufacturing. Expert Systems with Applications, 51, 85–106. doi:10.1016/j.eswa.2015.12.02710.1016/j.eswa.2015.12.027
  • Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15, 1667–1689. doi:10.1162/089976603321891855
  • Khemchandani, R., & Chandra, S. (2009). Knowledge based proximal support vector machines. European Journal of Operational Research, 195, 914–923. doi:10.1016/j.ejor.2007.11.023
  • Kim, D., Kang, P., Cho, S., Lee, H., & Doh, S. (2012). Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing. Expert Systems with Applications, 39, 4075–4083. doi:10.1016/j.eswa.2011.09.088
  • Köksal, G., Batmaz, İ., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications, 38, 13448–13467. doi:10.1016/j.eswa.2011.04.063
  • Koltchinskii, V., Abdallah, C. T., Ariola, M., & Dorato, P. (2001). Statistical learning control of uncertain systems: Theory and algorithms. Applied Mathematics and Computation, 120, 31–43. doi:10.1016/S0096-3003(99)00283-0
  • Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
  • Kwak, D.-S., & Kim, K.-J. (2012). A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes. Expert Systems with Applications, 39, 2590–2596. doi:10.1016/j.eswa.2011.08.114
  • Lang, S. (2007). Durchgängige Mitarbeiterinformation zur Steigerung von Effizienz und Prozesssicherheit in der Produktion (Dissertation). Universität Erlangen-Nürnberg, Bamberg: Meisenbach Verlag.
  • Larose, D. (2005). Discovering knowledge in data – An introduction to data mining. Hoboken, NJ: Wiley.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. doi:10.1038/nature14539
  • LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1, 541–555.
  • Lee, J., & Ha, S. (2009). Recognizing yield patterns through hybrid applications of machine learning techniques. Information Sciences, 179, 844–850. doi:10.1016/j.ins.2008.11.008
  • Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1, 38–41. doi:10.1016/j.mfglet.2013.09.005
  • Li, H., Liang, Y., & Xu, Q. (2009). Support vector machines and its applications in chemistry. Chemometrics and Intelligent Laboratory Systems, 95, 188–198. doi:10.1016/j.chemolab.2008.10.007
  • Li, T.-S., & Huang, C.-L. (2009). Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing. Expert Systems with Applications, 36, 374–385. doi:10.1016/j.eswa.2007.09.023
  • Loyer, J.-L., Henriques, E., Fontul, M., & Wiseall, S. (2016). Comparison of machine learning methods applied to the estimation of manufacturing cost of jet engine components. International Journal of Production Economics, 178, 109–119. doi:10.1016/j.ijpe.2016.05.006
  • Lu, S. C.-Y. (1990). Machine learning approaches to knowledge synthesis and integration tasks for advanced engineering automation. Computers in Industry, 15, 105–120. doi:10.1016/0166-3615(90)90088-7
  • Manallack, D. T., & Livingstone, D. J. (1999). Neural networks in drug discovery: Have they lived up to their promise? European Journal of Medicinal Chemistry, 34, 95–208.
  • Manning, C. D., Raghavan, P., & Schütze, H. (2009). An introduction to information retrieval. Cambridge: Cambridge University Press.
  • Margolis, D., Land, W. H., Gottlieb, R., & Qiao, X. (2011). A complex adaptive system using statistical learning theory as an inline preprocess for clinical survival analysis. Procedia Computer Science, 6, 279–284. doi:10.1016/j.procs.2011.08.052
  • Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 183, 1466–1476. doi:10.1016/j.ejor.2006.04.051
  • Monostori, L. (1993). A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks. CIRP Annals, 42, 485–488. doi:10.1016/S0007-8506(07)62491-3
  • Monostori, L. (2003). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. Engineering Applications of Artificial Intelligence, 16, 277–291. doi:10.1016/S0952-1976(03)00078-2
  • Monostori, L., Hornyák, J., Egresits, C., & Viharos, Z. J. (1998). Soft computing and hybrid AI approaches to intelligent manufacturing. Tasks and Methods in Applied Artificial Intelligence Lecture Notes in Computer Science, 1416, 765–774. doi:10.1007/3-540-64574-8_463
  • Monostori, L., Márkus, A., Van Brussel, H., & Westkämper, E. (1996). Machine learning approaches to manufacturing. CIRP Annals, 45, 675–712.
  • Nilsson, N. J. (2005). Introduction to machine learning. Stanford, CA.
  • Okamoto, S., & Yugami, N. (2003). Effects of domain characteristics on instance-based learning algorithms. Theoretical Computer Science, 298, 207–233. doi:10.1016/S0304-3975(02)00424-3
  • Opitz, D., & Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research, 11, 169–198.
  • Pham, D. T., & Afify, A. A. (2005). Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture, 219, 395–412. doi:10.1243/095440505X32274
  • Quadrianto, N., & Buntine, W. L. (2011). Regression (pp. 838–842). Sammut, C. & Webb, G. I. (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:10.1007/978-0-387-30164-8
  • Rejani, Y. I. A., & Selvi, S. T. (2009). Early detection of breast cancer using SVM classifier technique. International Journal on Computer Science and Engineering, 1, 127–130.
  • Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 35, 401–410. doi:10.1109/TSMCC.2004.843228
  • Salahshoor, K., Kordestani, M., & Khoshro, M. S. (2010). Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. Energy, 35, 5472–5482. doi:10.1016/j.energy.2010.06.001
  • Sammut, C., & Webb, G. I. (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:10.1007/978-0-387-30164-8
  • Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM Journal, 3, 210–229. doi:10.1147/rd.33.0210
  • Scheidat, T., Leich, M., Alexander, M., & Vielhauer, C. (2009). Support vector machines for dynamic biometric handwriting classification. In Proceedings of AIAI Workshops (pp. 118–125). Thessaloniki, Greece.
  • Shiang, L. E., & Nagaraj, S. (2011). Impediments to innovation: Evidence from Malaysian manufacturing firms. Asia Pacific Business Review, 17, 209–223. doi:10.1080/13602381.2011.533502
  • Simon, H. A. (1983). Why should machines learn? In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine learning (pp. 25–37). Charlotte, NC: Tioga Press.
  • Smola, A., & Vishwanathan, S. V. N. (2008). Introduction to machine learning. Cambridge: Cambridge University Press.
  • Steel, D. (2011). Testability and statistical learning theory. In P. S. Bandyopadhyay & M. R. Forster (Eds.), Handbook of the philosophy of science (Vol. 7, pp. 849–861). Amsterdam: Elsevier. doi:10.1016/B978-0-444-51862-0.50028-9
  • Stone, P. (2011). Reinforcement learning (pp. 849–851). Sammut, C., & Webb, G. I. (Eds.) (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:10.1007/978-0-387-30164-8
  • Sun, J., Rahman, M., Wong, Y., & Hong, G. (2004). Multiclassification of tool wear with support vector machine by manufacturing loss consideration. International Journal of Machine Tools and Manufacture, 44, 1179–1187. doi:10.1016/j.ijmachtools.2004.04.003
  • Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine learning for predictive maintenance: A multiple classifier approach. IEEE Transactions on Industrial Informatics, 11, 812–820. doi:10.1109/TII.2014.2349359
  • Sutton, R. S., & Barto, A. G. (2012). Reinforcement learning: An introduction (2nd ed.). Cambridge, MA: MIT Press.
  • Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. Neurocomputing, 48, 847–861. doi:10.1016/S0925-2312(01)00676-2
  • Thomas, A. J., Byard, P., & Evans, R. (2012). Identifying the UK’s manufacturing challenges as a benchmark for future growth. Journal of Manufacturing Technology Management, 23, 142–156. doi:10.1108/17410381211202160
  • Wang, K.-J., Chen, J. C., & Lin, Y.-S. (2005). A hybrid knowledge discovery model using decision tree and neural network for selecting dispatching rules of a semiconductor final testing factory. Production Planning & Control, 16, 665–680. doi:10.1080/09537280500213757
  • White House. (2014, October 27). FACT SHEET: President Obama announces new actions to further strengthen U.S. manufacturing. Retrieved from https://www.whitehouse.gov/the-press-office/2014/10/27/fact-sheet-president-obama-announces-new-actions-further-strengthen-us-m
  • Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21, 2560–2574. doi:10.1016/j.ymssp.2006.12.007
  • Wiendahl, H.-P., & Scholtissek, P. (1994). Management and control of complexity in manufacturing. CIRP Annals, 43, 533–540. doi:10.1016/S0007-8506(07)60499-5
  • Wiering, M., & Van Otterlo, M. (2012). Reinforcement learning: State-of-the-art. New York, NY: Springer.
  • Wu, Q. (2010). Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system. Journal of Computational and Applied Mathematics, 233, 2481–2491. doi:10.1016/j.cam.2009.10.030
  • Wuest, T. (2015). Identifying product and process state drivers in manufacturing systems using supervised machine learning (Springer theses). New York, NY: Springer Verlag.10.1007/978-3-319-17611-6
  • Wuest, T., Irgens, C., & Thoben, K.-D. (2014). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25, 1167–1180. doi:10.1007/s10845-013-0761-y
  • Wuest, T., Liu, A., Lu, S. C.-Y., & Thoben, K.-D. (2014). Application of the stage gate model in production supporting quality management. Procedia CIRP, 17, 32–37. doi:10.1016/j.procir.2014.01.071
  • Yang, K., & Trewn, J. (2004). Multivariate statistical methods in quality management. New York, NY: McGraw-Hill.
  • Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003) (pp. 8). Washington, DC.
  • Zheng, Y., Li, S., & Wang, X. (2010). An approach to model building for accelerated cooling process using instance-based learning. Expert Systems with Applications, 37, 5364–5371. doi:10.1016/j.eswa.2010.01.020
  • Zhou, Z.-H. (2012). Ensemble methods – Foundations and algorithms, Machine Learning & Pattern Recognition Series. Florida, FL: Chapman & Hall/CRC. ISBN: 978-1-4398-3003-1.