2,090
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Improved GRU prediction of paper pulp press variables using different pre-processing methods

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2155263 | Received 29 Jul 2022, Accepted 30 Nov 2022, Published online: 23 Dec 2022

References

  • Abbasi, T., Lim, K. H., & Yam, K. S. (2019). Predictive maintenance of oil and gas equipment using recurrent neural network. IOP Conference Series: Materials Science and Engineering, 495:12067.
  • Almeida Pais, J. E. D., Raposo, H. D. N., Farinha, J. T., Cardoso, A. J. M., & Marques, P. A. (2021). Optimizing the life cycle of physical assets through an integrated life cycle assessment method. Energies, 14(19), 6128. https://doi.org/10.3390/en14196128
  • Asgarpour, M., Sørensen, J., Vazquez, S. L., Kulkarni, C. S., Strom, T. H., Hill, B. L., Smalling, K. M., & Quach, C. C. (2018). Bayesian based prognostic model for predictive maintenance of offshore wind farms. International Journal of Prognostics and Health Management, 9(1). https://doi.org/10.36001/ijphm.2018.v9i1.2700
  • Balevi, E., Rabee, F. T. A., & Gitlin, R. D. (2018). Aloha-noma for massive machine-to-machine iot communication. In 2018 IEEE International Conference on Communications (ICC), 1–22.
  • Bury, T. M., Sujith, R., Pavithran, I., Scheffer, M., Lenton, T. M., Anand, M., & Bauch, C. T. (2021). Deep learning for early warning signals of tipping points. Proceedings of the National Academy of Sciences, 118(39):e2106140118.
  • Canizo, M., Onieva, E., Conde, A., Charramendieta, S., & Trujillo, S. (2017). Real-time predictive maintenance for wind turbines using big data frameworks. 2017 IEEE International Conference on Prognostics and Health Management, ICPHM 2017, 70–77.
  • Choi, Y., Kwun, H., Kim, D., Lee, E., & Bae, H. (2020). Method of predictive maintenance for induction furnace based on neural network. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 609–612.
  • Chong, M. M., Abraham, A., & Paprzycki, M. (2004). Traffic accident analysis using decision trees and neural networks. International Journal of Information Technology and Computer Science, 6, 22–28. https://doi.org/10.48550/arXiv.cs/0405050
  • Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. 2014. On the properties of neural machine translation: Encoder-decoder approaches. CoRR, 1409, abs, 1259. https://doi.org/10.48550/arXiv.1409.1259
  • Chui, K. T., Gupta, B. B., & Vasant, P. (2021). A genetic algorithm optimized rnn-lstm model for remaining useful life prediction of turbofan engine. Electronics, 10(3), 285. https://doi.org/10.3390/electronics10030285
  • Cleveland, W. S. (1981). Lowess: A program for smoothing scatterplots by robust locally weighted regression. The American Statistician, 35(1), 54. https://doi.org/10.2307/2683591
  • Cline, B., Niculescu, R. S., Huffman, D., & Deckel, B. (2017). Predictive maintenance applications for machine learning. Proceedings - Annual Reliability and Maintainability Symposium.
  • Couso, I., Borgelt, C., Hullermeier, E., & Kruse, R. (2019). Fuzzy sets in data analysis: From statistical foundations to machine learning. IEEE Computational Intelligence Magazine, 14(1), 31–44. https://doi.org/10.1109/MCI.2018.2881642
  • Cross, M. (1988). Raising the value of maintenance in the corporate environment. Management Research News, 11(3), 8–11. https://doi.org/10.1108/eb027976
  • Dai, Y., Wang, Y., Leng, M., Yang, X., & Zhou, Q. (2022). Lowess smoothing and random forest based gru model: A short-term photovoltaic power generation forecasting method. Energy, 256, 124661. https://doi.org/10.1016/j.energy.2022.124661
  • Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., & Barbosa, J. (2020). Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges. Computers in Industry, 123, 103298. https://doi.org/10.1016/j.compind.2020.103298
  • Drath, R., & Horch, A. (2014). Industrie 4.0: Hit or hype? [industry forum]. IEEE Industrial Electronics Magazine, 8(2), 56–58. https://doi.org/10.1109/MIE.2014.2312079
  • Edwards, D. J., Holt, G. D., & Harris, F. (1998). Predictive maintenance techniques and their relevance to construction plant. Journal of Quality in Maintenance Engineering, 4(1), 25–37. https://doi.org/10.1108/13552519810369057
  • Eklund, P. (1998). of Intelligent Information Systems. v9 i1, A. H., and undefined 2002. A performance survey of public domain supervised machine learning algorithms. https://www.researchgate.net/profile/Peter-Eklund/publication/2767745_A_Performance_Survey_of_Public_Domain_Supervised_Machine_Learning_Algorithms/links/0fcfd50b315bee877a000000/A-Performance-Survey-of-Public-Domain-Supervised-Machine-Learning-Algorithms.pdf
  • Erboz, G. (2017). How to define industry 4.0: Main pillars of industry 4.0. Managerial Trends in the Development of Enterprises in Globalization Era, 761, 767. https://www.researchgate.net/profile/Gizem-Erboz-2/publication/326557388_How_To_Define_Industry_40_Main_Pillars_Of_Industry_40/links/5fc553374585152e9be7f201/How-To-Define-Industry-40-Main-Pillars-Of-Industry-40.pdf
  • Florea, G., Paraschiv, A., & Cimpoesu, E. (2012). Wind farm noise monitoring used for predictive maintenance. IFAC Proceedings Volumes, 45:1822–1827.
  • Gao, S., Huang, Y., Zhang, S., Han, J., Wang, G., Zhang, M., & Lin, Q. (2020). Short-term runoff prediction with gru and lstm networks without requiring time step optimization during sample generation. Journal of Hydrology, 589, 125188. https://doi.org/10.1016/j.jhydrol.2020.125188
  • Glistau, E., & Coello Machado, N. I. (2018). Industry 4.0, logistics 4.0 and materials - chances and solutions. Materials Science Forum, 919, 307–314. https://doi.org/10.4028/www.scientific.net/MSF.919.307
  • Gorski, E. G., de Freitas Rocha Loures, E., Santos, E. A. P., Kondo, R. E., & Martins, G. R. D. N. (2021). Towards a smart workflow in cmms/eam systems: An approach based on ml and mcdm. Journal of Industrial Information Integration, 100278. https://doi.org/10.1016/j.jii.2021.100278
  • He, K., Liu, Z., Sun, Y., Mao, L., & Lu, S. (2022). Degradation prediction of proton exchange membrane fuel cell using auto-encoder based health indicator and long short-term memory network. International Journal of Hydrogen Energy, 47, 35055–35067. https://doi.org/10.1016/j.ijhydene.2022.08.092
  • Huang, Y., & Li, G. (2010). Descriptive models for internet of things. In 2010 International Conference on Intelligent Control and Information Processing, 483–486.
  • Husain, S., Prasad, A., Kunz, A., Papageorgiou, A., & Song, J. (2014). Recent trends in standards related to the internet of things and machine-to-machine communications. Journal of Information and Communication Convergence Engineering, 12(4), 228–236. https://doi.org/10.6109/jicce.2014.12.4.228
  • Jabeur, S. B., Gharib, C., Mefteh-Wali, S., & Arfi, W. B. (2021). Catboost model and artificial intelligence techniques for corporate failure prediction. Technological Forecasting and Social Change, 166, 120658. https://doi.org/10.1016/j.techfore.2021.120658
  • Jeenanunta, C., Abeyrathna, K. D., Dilhani, M. H. M. R. S., Hnin, S. W., & Phyo, P. P. (2019). Time series outlier detection for short-term electricity load demand forecasting. International Scientific Journal of Engineering and Technology (ISJET), 2(1), 37–50. https://ph02.tci-thaijo.org/index.php/isjet/article/view/175908
  • Jezzini, A., Ayache, M., Elkhansa, L., Makki, B., & Zein, M. (2013). Effects of predictive maintenance(pdm), proactive maintenace(pom) & preventive maintenance(pm) on minimizing the faults in medical instruments. In 2013 2nd International Conference on Advances in Biomedical Engineering, 53–56.
  • Ji, W., & Wang, L. (2017). Big data analytics based fault prediction for shop floor scheduling. Journal of Manufacturing Systems, 43, 187–194. https://doi.org/10.1016/j.jmsy.2017.03.008
  • Kalsoom, T., Ramzan, N., Ahmed, S., & Ur-Rehman, M. (2020). Advances in sensor technologies in the era of smart factory and industry 4.0. Sensors, 20(23), 6783. https://doi.org/10.3390/s20236783
  • Kim, D. Y., Jeong, Y. S., & Kim, S. 2017. Data-filtering system to avoid total data distortion in iot networking. Symmetry, 9(16), 16. 2017. https://doi.org/10.3390/sym9010016.
  • Koprinkova-Hristova, P. D., Hadjiski, M. B., Doukovska, L. A., & Beloreshki, S. V. (2011). Recurrent neural networks for predictive maintenance of mill fan systems. International Journal of Electronics and Telecommunications, 57(3), 401–406. https://doi.org/10.2478/v10177-011-0055-2
  • Kulkarni, H., Thangam, M., & Amin, A. P. (2021). Artificial neural network-based prediction of prolonged length of stay and need for post-acute care in acute coronary syndrome patients undergoing percutaneous coronary intervention. European Journal of Clinical Investigation, 51(3), e13406. https://doi.org/10.1111/eci.13406
  • Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., & Liao, H. 2006. Intelligent prognostics tools and e-maintenance. Computers in Industry, 57(6), 476–489. E-maintenance Special Issue. https://doi.org/10.1016/j.compind.2006.02.014
  • Lei, X., Sandborn, P., Bakhshi, R., Kashani-Pour, A., & Goudarzi, N. (2015). Phm based predictive maintenance optimization for offshore wind farms. In 2015 IEEE Conference on Prognostics and Health Management (PHM), 1–8.
  • L’Heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. (2017). Machine learning with big data: Challenges and approaches. IEEE Access, 5, 7776–7797. https://doi.org/10.1109/ACCESS.2017.2696365
  • Lim, T. S., Loh, W. Y., & Shih, Y. S. 2000. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 40(3), 203–228. 2000. https://doi.org/10.1023/A:1007608224229
  • Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., & Hampapur, A. (2014). Improving rail network velocity: A machine learning approach to predictive maintenance.Transportation Research Part C: Emerging Technologies, 45, 17–26. Advances in Computing and Communications and their Impact on Transportation Science and Technologies. https://doi.org/10.1016/j.trc.2014.04.013
  • Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47. https://doi.org/10.1016/j.ymssp.2018.02.016
  • Li, C., Xie, C., Zhang, B., Chen, C., & Han, J. (2018). Deep fisher discriminant learning for mobile hand gesture recognition. Pattern Recognition, 77, 276–288. https://doi.org/10.1016/j.patcog.2017.12.023
  • Lv, Y., Zhou, Q., Li, Y., & Li, W. (2021). A predictive maintenance system for multi-granularity faults based on adabelief-bp neural network and fuzzy decision making. Advanced Engineering Informatics, 49, 101318. https://doi.org/10.1016/j.aei.2021.101318
  • Lykourentzou, I., Giannoukos, I., Nikolopoulos, V., Mpardis, G., & Loumos, V. (2009). Dropout prediction in e-learning courses through the combination of machine learning techniques. Computers & Education, 53(3), 950–965. https://doi.org/10.1016/j.compedu.2009.05.010
  • Markiewicz, M., Wielgosz, M., Bochenski, M., Tabaczynski, W., Konieczny, T., & Kowalczyk, L. (2019). Predictive maintenance of induction motors using ultra-low power wireless sensors and compressed recurrent neural networks. IEEE Access, 7, 178891–178902. https://doi.org/10.1109/ACCESS.2019.2953019
  • Martins, A. B., Farinha, J. T., & Cardoso, A. M. (2020). Calibration and certification of industrial sensors – A global review. WSEAS Transactions on Systems and Control, 15, 394–416. https://doi.org/10.37394/23203.2020.15.41
  • Martins, A., Fonseca, I., Farinha, J. T., Reis, J., & Cardoso, A. M. 2021. Maintenance prediction through sensing using hidden Markov models—a case study. Applied Sciences, 11(7685), 7685. 2021. https://doi.org/10.3390/app11167685
  • Mateus, B. C., Mendes, M., Farinha, J. T., Assis, R., & Cardoso, A. M. (2021). Comparing lstm and gru models to predict the condition of a pulp paper press. Energies, 14(21), 6958. https://doi.org/10.3390/en14216958
  • Miller, K., Hettinger, C., Humpherys, J., Jarvis, T., & Kartchner, D. (2017). Forward thinking: Building deep random forests.
  • Narendra, N., Ponnalagu, K., Ghose, A., & Tamilselvam, S. (2015). Goal-driven context-aware data filtering in iot-based systems. 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2172–2179.
  • Nascimento, R. G., & Viana, F. A. (2019). Fleet prognosis with physics-informed recurrent neural networks. Structural Health Monitoring 2019: Enabling Intelligent Life-Cycle Health Management for Industry Internet of Things (IIOT) - Proceedings of the 12th International Workshop on Structural Health Monitoring, 2:1740–1747.
  • Phyo, P. P., Jeenanunta, C., & Hashimoto, K. (2019). Electricity load forecasting in Thailand using deep learning models. International Journal of Electrical and Electronic Engineering & Telecommunications, 8(4), 221–225. https://doi.org/10.18178/ijeetc.8.4.221-225
  • Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. Eurasip Journal on Advances in Signal Processing, 2016, 1–16. https://doi.org/10.1186/s13634-016-0355-x
  • Rivas, A., Fraile, J. M., Chamoso, P., González-Briones, A., Sittón, I., & Corchado, J. M. (2019). A predictive maintenance model using recurrent neural networks. Advances in Intelligent Systems and Computing, 950, 261–270. https://doi.org/10.1007/978-3-030-20055-8_25
  • Rodrigues, J. A., Farinha, J. T., Mendes, M., Mateus, R., & Cardoso, A. (2021). Short and long forecast to implement predictive maintenance in a pulp industry. Eksploatacja I Niezawodnosc - Maintenance and Reliability, 24(1), 33–41. https://doi.org/10.17531/ein.2022.1.5
  • Santra, A. S., & Lin, J.-L. 2019,January. Integrating long short-term memory and genetic algorithm for short-term load forecasting. Energies 12:11 2040. Number: 11 Publisher: Multidisciplinary Digital Publishing Institute https://doi.org/10.3390/en12112040
  • Schwenk, H., & Bengio, Y. (2000). Boosting neural networks. Neural Computation, 12(8), 1869–1887. https://doi.org/10.1162/089976600300015178
  • Sherif, Y. S., & Smith, M. L. (1981). Optimal maintenance models for systems subject to failure–a review. Naval Research Logistics Quarterly, 28, 47–74. https://doi.org/10.1002/nav.3800280104
  • Spendla, L., Kebisek, M., Tanuska, P., & Hrcka, L. (2017). Concept of predictive maintenance of production systems in accordance with industry 4.0. In 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 000405–000410.
  • Tipping, M. E. (2003). Bayesian inference: An introduction to principles and practice in machine learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3176, 41–62. https://doi.org/10.1007/978-3-540-28650-9_3
  • Tsibulnikova, M. R., Pham, V. A., Aikina, T. Y., Xue-feng, L., Xiao-ben, L., Jan-ding, H., Al, Abbasi, T., Lim, K. H., & Yam, K. S. (2019). Predictive maintenance of oil and gas equipment using recurrent neural network. IOP Conference Series: Materials Science and Engineering, 495:12067.
  • Turnbull, A., & Carroll, J. (2021). Cost benefit of implementing advanced monitoring and predictive maintenance strategies for offshore wind farms. Energies, 14(16), 4922. https://doi.org/10.3390/en14164922
  • Udo, W., & Muhammad, Y. (2021). Data-driven predictive maintenance of wind turbine based on scada data. IEEE Access, 9, 162370–162388. https://doi.org/10.1109/ACCESS.2021.3132684
  • Wang, S.-C. (2003). Artificial neural network. Interdisciplinary Computing in Java Programming, 81–100. https://doi.org/10.1007/978-1-4615-0377-4_5
  • Wang, F.-K., Amogne, Z. E., Chou, J.-H., & Tseng, C. (2022). Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism. Energy, 254, 124344. https://doi.org/10.1016/j.energy.2022.124344
  • Wang, Q., Bu, S., & He, Z. (2020). Achieving predictive and proactive maintenance for high-speed railway power equipment with lstm-rnn. IEEE Transactions on Industrial Informatics, 16(10), 6509–6517. https://doi.org/10.1109/TII.2020.2966033
  • Wu, H., Huang, A., & Sutherland, J. W. (2020). Avoiding environmental consequences of equipment failure via an lstm-based model for predictive maintenance. Procedia Manufacturing, 43:666–673. Sustainable Manufacturing - Hand in Hand to Sustainability on Globe: Proceedings of the 17th Global Conference on Sustainable Manufacturing.
  • Yam, R. C., Tse, P. W., Li, L., & Tu, P. 2001. Intelligent predictive decision support system for condition-based maintenance. The International Journal of Advanced Manufacturing Technology, 17(5), 383–391. 2001. https://doi.org/10.1007/s001700170173
  • Zfle, M., Moog, F., Lesch, V., Krupitzer, C., & Kounev, S. (2021). A machine learning-based workflow for automatic detection of anomalies in machine tools. ISA Transactions, 121, 180–190. https://doi.org/10.1016/j.isatra.2021.03.036
  • Zhang, J., Zeng, Y., & Starly, B. (2021). Recurrent neural networks with long term temporal dependencies in machine tool wear diagnosis and prognosis. SN Applied Sciences, 3(4), 1–13. https://doi.org/10.1007/s42452-021-04427-5
  • Zhikun, H., Bin, J., Linzi, Y., & Xiaolong, C. (2013). Predictive maintenance strategy of variable period of power transformer based on reliability and cost. 2013 25th Chinese Control and Decision Conference, CCDC 2013, 4803–4807.
  • Zhou, C., Liu, X., Chen, W., Xu, F., & Cao, B. (2018). Optimal sliding mode control for an active suspension system based on a genetic algorithm. Algorithms, 11(12), 205. https://doi.org/10.3390/a11120205
  • Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big data: Opportunities and challenges. Neurocomputing, 237, 350–361. https://doi.org/10.1016/j.neucom.2017.01.026
  • Zibar, D., Piels, M., Jones, R., & Schäeffer, C. G. (2016). Machine learning techniques in optical communication. Journal of Lightwave Technology, 34(6), 1442–1452. https://doi.org/10.1109/JLT.2015.2508502