1,594
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identifying the promising production planning and scheduling method for manufacturing in Industry 4.0: a literature review

, ORCID Icon & ORCID Icon
Article: 2279329 | Received 16 Mar 2023, Accepted 30 Oct 2023, Published online: 08 Nov 2023

References

  • Adamiecki, K. (1931). Der Harmonograph, ein neuartiges Mittel zur schaubildlichen Darstellung von Betriebsvorgängen. Wirtschaftlichkeit, 108. https://bibliotekanauki.pl/articles/589427
  • Aghezzaf, E.-H., Sitompul, C., & Van den Broecke, F. (2011). A robust hierarchical production planning for a capacitated two-stage production system. Computers & Industrial Engineering, 60 (2), 361–24. https://doi.org/10.1016/j.cie.2010.12.005
  • Aguirre, A. M., & Papageorgiou, L. G. (2018). Medium-term optimization-based approach for the integration of production planning, scheduling and maintenance. Computers and Chemical Engineering, 116, 191–211. https://doi.org/10.1016/j.compchemeng.2018.04.030
  • Alfieri, A., Tolio, T., & Urgo, M. (2012). A two-stage stochastic programming project scheduling approach to production planning. The International Journal of Advanced Manufacturing Technology, 62(1–4), 279–290. https://doi.org/10.1007/s00170-011-3794-4
  • Altendorfer, K., Felberbauer, T., & Jodlbauer, H. (2016). Effects of forecast errors on optimal utilisation in aggregate production planning with stochastic customer demand. International Journal of Production Research, 54(12), 3718–3735. https://doi.org/10.1080/00207543.2016.1162918
  • Arias-Bolzmann, L., Fernando Anton Agurto, W., Maria Coronel Chavez, A., Retamozo Pantoja, R., & Ticona Pinto, A. (2018). Decisions in hierarchical production planning: Goals, heuristics and bias. ESPACIOS, 39(14). www.revistaespacios.com/a18v39n14/a18v39n14p03.pdf
  • Asmussen, J. N., Kristensen, J., Steger-Jensen, K., & Vejrum Wahrens, B. (2018). When to integrate strategic and tactical decisions? Introduction of an asset/inventory ratio guiding fit for purpose production planning. International Journal of Physical Distribution & Logistics Management, 48(5), 545–558. https://doi.org/10.1108/IJPDLM-02-2018-0058
  • Audaces. 2021. Retrieved May09, 2023, from https://audaces.com/en/industry-3-0-industry-4-0-2/.
  • Bao, J., Guo, D., Jie, L., & Zhang, J. (2019). The modelling and operations for the digital twin in the context of manufacturing. Enterprise Information Systems, 13(4), 534–556. https://doi.org/10.1080/17517575.2018.1526324
  • Bhosekar, A., & Ierapetritou, M. (2018). Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Computers and Chemical Engineering, 108, 250–267. https://doi.org/10.1016/j.compchemeng.2017.09.017
  • Cheng, Y., Luning, B., Tao, F., & Ping, J. (2020). Hypernetwork-based manufacturing service scheduling for distributed and collaborative manufacturing operations towards smart manufacturing. Journal of Intelligent Manufacturing, 31(7), 1707–1720. https://doi.org/10.1007/s10845-018-1417-8
  • Chunyang, Y., Jiang, X., Shiqiang, Y., & Yang, C. (2020). Blockchain-based shared manufacturing in support of cyber physical systems: Concept, framework, and operation. Robotics and Computer Integrated Manufacturing, 64, 101931. https://doi.org/10.1016/j.rcim.2019.101931
  • D’Aniello, G., De Falco, M., & Mastrandrea, N. (2021). Designing a multi-agent system architecture for managing distributed operations within cloud manufacturing. Evolutionary Intelligence, 14(4), 2051–2058. https://doi.org/10.1007/s12065-020-00390-z
  • Dan, W., & Ierapetritou, M. (2007). Hierarchical approach for production planning and scheduling under uncertainty. Chemical Engineering and Processing, 46(11), 1129–1140. https://doi.org/10.1016/j.cep.2007.02.021
  • Daqiang, G., Mingxing, L., Zhong, R., & Huang, G. Q. (2021). Graduation intelligent manufacturing system (GiMS): An Industry 4.0 paradigm for production and operations management. Industrial Management & Data Systems, 121(1), 86–98. https://doi.org/10.1108/IMDS-08-2020-0489
  • Dias, L. S., & Ierapetritou, M. G. (2020). Integration of planning, scheduling and control problems using data-driven feasibility analysis and surrogate models. Computers and Chemical Engineering, 134, 106714. https://doi.org/10.1016/j.compchemeng.2019.106714
  • Dong, X., Srinivas Nageshwaraniyer, S., & Son, Y.J. (2016). A service-oriented simulation integration platform for hierarchical manufacturing planning and control. International Journal of Production Research, 54(23), 7212–7230. https://doi.org/10.1080/00207543.2016.1221535
  • Farooqui, A., Bengtsson, K., Falkman, P., & Fabian, M. (2020). Towards data-driven approaches in manufacturing: An architecture to collect sequences of operations. International Journal of Production Research, 58(16), 4947–4963. https://doi.org/10.1080/00207543.2020.1735660
  • Fatorachian, H., & Kazemi, H. (2018). A critical investigation of industry 4.0 in manufacturing: Theoretical operationalisation framework. Production Planning & Control, 29(8), 633–644. https://doi.org/10.1080/09537287.2018.1424960
  • Gantt, H. L. (1903). A graphical daily balance in manufacture. Transactions of the American Society of Mechanical Engineers, 24, 1322–1336. https://babel.hathitrust.org/cgi/pt?id=mdp.39015023119541&view=1up&seq=1634
  • Ghazanfari, M., & Murtagh, B. A. (2002). A multi-objective hierarchical production planning model under stochastic demand. Scientia Iranica, 9(3), 203–214.
  • Giordani, S., Lujak, M., & Martinelli, F. (2013). A distributed multi-agent production planning and scheduling framework for mobile robots. Computers & Industrial Engineering, 64(1), 19–30. https://doi.org/10.1016/j.cie.2012.09.004
  • Glomb, L., Liers, F., & Rosel, F. (2022). A rolling-horizon approach for multi-period optimization. European Journal of Operational Research, 300(1), 189–206. https://doi.org/10.1016/j.ejor.2021.07.043
  • Guzman, E., Andres, B., & Poler, R. (2022). Models and algorithms for production planning, scheduling and sequencing problems: A holistic framework and a systematic review. Journal of Industrial Information Integration, 27, 100287. https://doi.org/10.1016/j.jii.2021.100287
  • Gyulai, D., Pfeiffer, A., & Monostori, L. (2017). Robust production planning and control for multi-stage systems with flexible final assembly lines. International Journal of Production Research, 55(13), 3657–3673. https://doi.org/10.1080/00207543.2016.1198506
  • Han, J., Liu, Y., Luo, L., & Mao, M. (2020). Integrated production planning and scheduling under uncertainty: A fuzzy bi-level decision-making approach. Knowledge-Based Systems, 201-202, 106056–106202. https://doi.org/10.1016/j.knosys.2020.106056
  • Hax, A. C., & Meal, H. C. 1973. “Hierarchical integration of production planning and scheduling.” https://prolog.univie.ac.at/teaching/LVAs/KFK-Seminar/SS14/HaxMeal1973.pdf.
  • Herrmann, J.-P., Tackenberg, S., Padoano, E., & Gamber, T. (2022). Approaches of production planning and control under Industry 4.0: A literature review. Journal of Industrial Engineering & Management, 15(1), 4–30.
  • Holmstrom, J., Liotta, G., & Chaudhuri, A. (2017). Sustainability outcomes through direct digital manufacturing-based operational practices: A design theory approach. Journal of Cleaner Production, 167, 951–961. https://doi.org/10.1016/j.jclepro.2017.03.092
  • Jamalnia, A., Yang, J.-B., Feili, A., Dong-Ling, X., & Jamali, G. (2019). Aggregate production planning under uncertainty: A comprehensive literature survey and future research directions. The International Journal of Advanced Manufacturing Technology, 102(1–4), 159–181. https://doi.org/10.1007/s00170-018-3151-y
  • Jay, A., Glover, F., Kelly, J. P., & Laguna, M. 2003. Simulation-based optimization: practical introduction to simulation optimization. Proceedings of the 35th Winter Simulation Conference: Driving Innovation. New Orleans, Lousiana, USA.
  • Jiang, N.-Y., & Yan, H.-S. (2022). Integrated optimization of production planning and scheduling in uncertain re-entrance environment for fixed-position assembly workshops. Journal of Intelligent & Fuzzy Systems, 42(3), 1705–1722. https://doi.org/10.3233/JIFS-211159
  • Johnson, E. A. (1960). The long-range future of operational research. Operations Research, 8(1), 1–23. https://doi.org/10.1287/opre.8.1.1
  • Johnson, L. A., & Montgomery, D. C. (1974). Operations research in production planning, scheduling, and inventory control (1st ed.). John Wiley & Sons.
  • Jun, C., Yeon Lee, J., Yoon, J.-S., & Hyun Kim, B. 2017. Applications’ integration and operation platform to support smart manufacturing by small and medium-sized enterprises. Procedia Manufacturing. 1950–1957.
  • Kang, S. G., & Choi, S. H. (2010). Multi-agent based beam search for intelligent production planning and scheduling. International Journal of Production Research, 48(11), 3319–3353. https://doi.org/10.1080/00207540902810502
  • Kan, W., & Shen, Y. (2020). A unified view on planning, scheduling and dispatching for a factory. Advanced Engineering Informatics, 46, 101188. https://doi.org/10.1016/j.aei.2020.101188
  • Khakifirooz, M., Fathi, M., & Kan, W. (2019). Development of smart semiconductor manufacturing: Operations research and data science perspectives. Institute of Electrical and Electronics Engineers Access, 7, 108419–108430. https://doi.org/10.1109/ACCESS.2019.2933167
  • Krishnan, T., Khan, A., & Alqurni, J. (2022). Aggregate production planning and scheduling in the Industry 4.0 environment. Procedia Computer Science, 204, 784–793. https://doi.org/10.1016/j.procs.2022.08.095
  • Kumar, S., Manjrekar, V., Singh, V., & Kumar Lad, B. (2020). Integrated yet distributed operations planning approach: A next generation manufacturing planning system. Journal of Manufacturing Systems, 54, 103–122. https://doi.org/10.1016/j.jmsy.2019.12.001
  • Lee, R. (2021). The effects of smart factory operational strategies and system management on the innovative performance of small- and medium- sized manufacturing firms. Sustainability, 13(6), 3087. https://doi.org/10.3390/su13063087
  • Legat, C., & Vogel-Heuser, B. (2017). A configurable partial-order planning approach for field level operation strategies of PLC-based industry 4.0 automated manufacturing systems. Engineering Applications of Artificial Intelligence, 66, 128–144. https://doi.org/10.1016/j.engappai.2017.06.014
  • Lenstra, J., & Rinnooym Kan, A. (1979). Computational complexity of discrete optimization problems. Annals of Discrete Mathematics, 4, 121–140. https://doi.org/10.1016/S0167-5060(08)70821-5
  • Luo, C., & Rong, G. (2009). A strategy for the integration of production planning and scheduling in refineries under uncertainty. Chinese Journal of Chemical Engineering, 17(1), 113–127. https://doi.org/10.1016/S1004-9541(09)60042-2
  • Luo, D., Thevenin, S., & Dolgui, A. (2022). A state-of-the-art on production planning in Industry 4.0. International Journal of Production Research. https://doi.org/10.1080/00207543.2022.2122622
  • Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities. Computers and Chemical Engineering, 33(12), 1919–1930. https://doi.org/10.1016/j.compchemeng.2009.06.007
  • Matthias, T., Fernandes, N. O., & Stevenson, M. 2020. Production planning and control in multi-stage assembly systems: An assessment of kanban, MRP, OPT (DBR) and DDMRP by simulation. International Journal of Production Research 1036–1050.
  • Menezes, G. C., Robson Meteus, G., & Gomez Ravetti, M. (2016). A hierarchical approach to solve a production planning and scheduling problem in bulk cargo terminal. Computers & Industrial Engineering, 97, 1–14. https://doi.org/10.1016/j.cie.2016.04.007
  • Mohamad, S., Pantamee, A. A., Keong, O. C., Hieu, V. M., Mutira, P., & Chong, K. W. (2022). Impact of industry 4.0 revolution and leadership support on the operational efficiency management of the manufacturing industry in ASEAN countries. Polish Journal of Management Studies, 25(2), 191–204. https://doi.org/10.17512/pjms.2022.25.2.12
  • Monostori, L., Erdos, G., Kadar, B., Kis, T., Kovacs, A., Pfeiffer, A., & Vancza, J. (2010). Digital enterprise solution for integrated production planning and control. Computers in Industry, 61(2), 112–126. https://doi.org/10.1016/j.compind.2009.10.008
  • Mourtzis, D., Doukas, M., & Psarommatis, F. (2015). A toolbox for the design, planning and operation of manufacturing networks in a mass customisation environment. Journal of Manufacturing Systems, 36, 274–286. https://doi.org/10.1016/j.jmsy.2014.06.004
  • Mula, J., Poler, R., Garcia-Sabater, J. P., & Lario, F. C. (2006). Models for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271–285. https://doi.org/10.1016/j.ijpe.2005.09.001
  • O’Reilly, S., Kumar, A., & Adam, F. (2015). The role of hierarchical production planning in food manufacturing SMEs. International Journal of Operations & Production Management, 35(10), 1362–1385. https://doi.org/10.1108/IJOPM-04-2014-0157
  • Pansare, R., & Yadav, G. (2022). Repurposing production operations during COVID-19 pandemic by integrating Industry 4.0 and reconfigurable manufacturing practices: An emerging economy perspective. Operations Management Research, 15(3–4), 1270–1289. https://doi.org/10.1007/s12063-022-00310-7
  • Park, K. T., Lee, D., & Do Noh, S. (2020). Operation procedures of a work-center-level digital twin for sustainable and smart manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(3), 791–814. https://doi.org/10.1007/s40684-020-00227-1
  • Paula Ferreira, W., Armellini, F., Santa-Eulalia, L., & Rebolledo, C. (2021). Modeling and simulation for Industry 4.0. In Dingli, A., Haddod, F., & Klüver, C. (Eds.), Artificial intelligence in industry 4.0 - a collection of innovative research case-studies that are reworking the way we look at industry 4.0 thanks to artificial intelligence (pp. 57). Springer International Publishing. https://doi.org/10.1007/978-3-030-61045-6_5
  • Rafiei, H., & Rabbani, M. (2009). An MADM framework toward hierarchical production planning in hybrid MTS/MTO environments. International Journal of Industrial and Manufacturing Engineering, 3(10), 1214–1218. https://publications.waset.org/5435/an-madm-framework-toward-hierarchical-production-planning-in-hybrid-mtsmto-environments
  • Rafiei, H., Rabbani, M., & Alimardani, M. (2013). Novel bi-level hierarchical production planning in hybrid MTS/MTO production contexts. International Journal of Production Research, 51(5), 1331–1346. https://doi.org/10.1080/00207543.2012.661089
  • Rajesh, P., Yadav, G., & Nagare, M. R. (2022). Integrating operational excellence strategies with Industry 4.0 technologies through reconfigurable manufacturing system practices. The TQM Journal. https://doi.org/10.1108/TQM-06-2022-0184
  • Santander, O., Betts, C. L., Archer, E. E., & Baldea, M. (2020). On the interaction and integration of production planning and (advanced) process control. Computers and Chemical Engineering, 133, 106627. https://doi.org/10.1016/j.compchemeng.2019.106627
  • Schuh, G., & Stich, V. (2012). Produktionsplanung und -steuerung 1. Springer.
  • Shah, N. K., & Ierapetritou, M. G. (2012). Integrated production planning and scheduling optimization of multisite, multiproduct process industry. Computers and Chemical Engineering, 37, 214–226. https://doi.org/10.1016/j.compchemeng.2011.08.007
  • Sharma, M., Raut, R. D., Sehrawat, R., & Ishizaka, A. (2023). Digitalisation of manufacturing operations: The influential role of organisational, social, environmental, and technological impediments. Experts Systems with Applications, 211, 211. https://doi.org/10.1016/j.eswa.2022.118501
  • Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling (3rd ed.). John Wiley & Sons.
  • Susara, A., Grossmann, van den Heever, I. E., & Ignacio, E. G. (2003). A strategy for the integration of production planning and reactive scheduling in the optimization of a hydrogen supply network. Computers & Chemical Engineering, 27(12), 1813–1839. https://doi.org/10.1016/S0098-1354(03)00158-3
  • Tan, Q., Tong, Y., Shaofeng, W., & Dongbo, L. (2019). Modeling, planning, and scheduling of shop-floor assembly process with dynamic cyber-physical interactions: A case study for CPS-based smart industrial robot production. The International Journal of Advanced Manufacturing Technology, 105(9), 3979–3989. https://doi.org/10.1007/s00170-019-03940-7
  • Taylor, F. W. (1911). Shop management. Harper & Brothers. https://ia800808.us.archive.org/25/items/TaylorShopManagementGood/Taylor%20shop%20management%20good.pdf
  • Torabi, S. A., Ebadian, M., & Tanha, R. (2010). Fuzzy hierarchical production planning (with a case study). Fuzzy Sets and Systems, 161(11), 1511–1529. https://doi.org/10.1016/j.fss.2009.11.006
  • Venkateswaran, J., & Son, Y. J. (2005). Hybrid system dynamic - discrete event simulation-based architecture for hierarchical production planning. International Journal of Production Research, 43(20), 4397–4429. https://doi.org/10.1080/00207540500142472
  • Vogel, T., Almada-Lobo, B., & Almeder, C. (2017). Integrated versus hierarchical approach to aggregate production planning and master production scheduling. OR Spectrum, 39(1), 193–229. https://doi.org/10.1007/s00291-016-0450-2
  • Wen, H., Hou, S., Liu, Z., & Liu, Y. (2017). An optimization algorithm for integrated remanufacturing production planning and scheduling system. Chaos, Solitons and Fractals, 105, 69–76. https://doi.org/10.1016/j.chaos.2017.10.012
  • Yan, H.-S., Wan, X.-Q., & Xiong, F.-L. (2015). Integrated production planning and scheduling for a mixed batch job-shop based on alternant iterative genetic algorithm. Journal of the Operational Research Society, 66(8), 1250–1258. https://doi.org/10.1057/jors.2014.88
  • Yaqiong, L., & Lin, D. (2017). Design an intelligent real-time operation planning system in distributed manufacturing network. Industrial Management & Data Systems, 117(4), 742–753. https://doi.org/10.1108/IMDS-06-2016-0220
  • Zangiacomi, A., Oesterle, J., Fornasiero, R., Sacco, M., & Azevedo, A. (2017). The implementation of digital technologies for operations management: A case study for manufacturing apps. Production Planning & Control, 28(16), 1318–1331. https://doi.org/10.1080/09537287.2017.1375142
  • Zanjani, M. K., Nourelfath, M., & Ait-Kadi, D. (2010). A multi-stage stochastic programming approach for production planning with uncertainty in the quality of raw materials and demand. International Journal of Production Research, 48(16), 4701–4723. https://doi.org/10.1080/00207540903055727
  • Zhang, M., & Qi, Y. (2013). Impact of supply chain strategy on mass customization implementation and effectiveness: Evidence from China. International Journal of Information and Decision Sciences, 5(4), 393–413. https://doi.org/10.1504/IJIDS.2013.058287
  • Zhang, T., Wang, Y., Jin, X., & Shan, L. (2019). Integration of production planning and scheduling based on RTN representation under uncertainties. Algorithms, 12(6), 120. https://doi.org/10.3390/a12060120
  • Zhi-Min, L., Jiang, T.-R., & Zai-Wei, L. (2021). Multiproduct and multistage integrated production planning model and algorithm based on an available production capacity network. International Journal of Minerals, Metallurgy and Materials, 28(8), 1343–1352. https://doi.org/10.1007/s12613-021-2310-6
  • Zhong, R. Y., Huang, G. Q., Shulin Lan, Q. Y. D., Zhang, T., Chen, X., & Xu, C. (2015). A two-level advanced production planning and scheduling model for RFID-enabled ubiquitous manufacturing. Advanced Engineering Informatics, 29(4), 799–812. https://doi.org/10.1016/j.aei.2015.01.002
  • Zhong, R. Y., Li, Z., Pang, L. Y., Pan, Y., Qu, T., & Huang, G. Q. (2013). RFID-enabled real-time advanced planning and scheduling shell for production decision making. International Journal of Computer Integrated Manufacturing, 26(7), 649–662. https://doi.org/10.1080/0951192X.2012.749532
  • Zukui, L., & Ierapetritou, M. G. (2009). Integrated production planning and scheduling using a decomposition framework. Chemical Engineering Science, 64(16), 3585–3597. https://doi.org/10.1016/j.ces.2009.04.047
  • Zukui, L., & Ierapetritou, M. G. (2010). Production planning and scheduling integration through augmented Lagrangian optimization. Computers and Chemical Engineering, 34(6), 996–1006. https://doi.org/10.1016/j.compchemeng.2009.11.016