1,306
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning-supported manufacturing: a review and directions for future research

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2326526 | Received 19 Apr 2023, Accepted 28 Feb 2024, Published online: 15 Mar 2024

References

  • Abidi, M. H., Alkhalefah, H., Mohammed, M. K., Umer, U., & Qudeiri, J. E. A. (2020). Optimal scheduling of flexible manufacturing system using improved lion-based hybrid machine learning approach. IEEE Access, 8, 96088–50. https://doi.org/10.1109/ACCESS.2020.2997663
  • Ai, Y., Lei, C., Cheng, J., & Mei, J. (2023). Prediction of weld area based on image recognition and machine learning in laser oscillation welding of aluminum alloy. Optics and Lasers in Engineering, 160, 107258. https://doi.org/10.1016/J.OPTLASENG.2022.107258
  • Al-Abassi, A., Karimipour, H., HaddadPajouh, H., Dehghantanha, A., & Parizi, R. M. (2020). Industrial big data analytics: Challenges and opportunities. In Handbook of big data privacy (pp. 37–61). Springer International Publishing. https://doi.org/10.1007/978-3-030-38557-6_3
  • Altenmüller, T., Stüker, T., Waschneck, B., Kuhnle, A., & Lanza, G. (2020). Reinforcement learning for an intelligent and autonomous production control of complex job-shops under time constraints. Production Engineering, 14(3), 319–328. https://doi.org/10.1007/S11740-020-00967-8
  • Asano, Y. M., Rupprecht, C., & Vedaldi, A. (2019). Self-labelling via simultaneous clustering and representation learning. arXiv preprint arXiv:1911.05371. https://doi.org/10.48550/arxiv.1911.05371
  • Bak, C., Roy, A. G., & Son, H. (2021). Quality prediction for aluminum diecasting process based on shallow neural network and data feature selection technique. CIRP Journal of Manufacturing Science and Technology, 33, 327–338. https://doi.org/10.1016/J.CIRPJ.2021.04.001
  • Barrionuevo, G. O., Ramos-Grez, J. A., Walczak, M., & Betancourt, C. A. (2021). Comparative evaluation of supervised machine learning algorithms in the prediction of the relative density of 316L stainless steel fabricated by selective laser melting. The International Journal of Advanced Manufacturing Technology, 113(1–2), 419–433. https://doi.org/10.1007/s00170-021-06596-4
  • Bauhofer, A., & Daraio, C. (2020). Neural networks for trajectory evaluation in direct laser writing. The International Journal of Advanced Manufacturing Technology, 107(5–6), 2563–2577. https://doi.org/10.1007/S00170-020-05086-3
  • Bertolini, M., Mezzogori, D., Neroni, M., & Zammori, F. (2021). Machine learning for industrial applications: A comprehensive literature review. Expert Systems with Applications, 175, 114820. https://doi.org/10.1016/J.ESWA.2021.114820
  • Bu, C., & Zhang, Z. (2020). Research on overfitting problem and correction in machine learning. Journal of Physics: Conference Series, 1693(1), 12100. https://doi.org/10.1088/1742-6596/1693/1/012100
  • Chanal, P. M., Kakkasageri, M. S., & Manvi, S. K. S. (2021). Security and privacy in the internet of things: Computational intelligent techniques-based approaches. In S. Bhattacharyya, P. Dutta, & S. Christ (Eds.), Recent trends in computational intelligence enabled research (pp. 111–127). Academic Press. https://doi.org/10.1016/B978-0-12-822844-9.00009-8
  • Chang, T.-W., Liao, K.-W., Lin, C.-C., Tsai, M.-C., & Cheng, C.-W. (2021). Predicting magnetic characteristics of additive manufactured soft magnetic composites by machine learning. The International Journal of Advanced Manufacturing Technology, 114(9–10), 3177–3184. https://doi.org/10.1007/s00170-021-07037-y
  • Chan, K. C., Rabaev, M., & Pratama, H. (2022). Generation of synthetic manufacturing datasets for machine learning using discrete-event simulation. Production & Manufacturing Research, 10(1), 337–353. https://doi.org/10.1080/21693277.2022.2086642
  • Charalampous, P., Kostavelis, I., Kontodina, T., & Tzovaras, D. (2021). Learning-based error modeling in FDM 3D printing process. Rapid Prototyping Journal, 27(3), 507–517. https://doi.org/10.1108/RPJ-03-2020-0046
  • Cho, E., Jun, J. H., Chang, T. W., & Choi, Y. (2020). Quality prediction modeling of plastic extrusion process. ICIC Express Letters, Part B: Applications, 11(5), 447–. https://doi.org/10.24507/ICICELB.11.05.447
  • Chu, M. S., Park, S., Jeong, J., Joo, K., Lee, Y., & Kang, J. (2022). Recognition of unknown wafer defect via optimal bin embedding technique. The International Journal of Advanced Manufacturing Technology, 121(5–6), 3439–3451. https://doi.org/10.1007/S00170-022-09447-Y
  • Csáji, B. C., Monostori, L., & Kádár, B. (2006). Reinforcement learning in a distributed market-based production control system. Advanced Engineering Informatics, 20(3), 279–288. https://doi.org/10.1016/J.AEI.2006.01.001
  • Das, B., Pal, S., & Bag, S. (2017). Torque based defect detection and weld quality modelling in friction stir welding process. Journal of Manufacturing Processes, 27, 8–17. https://doi.org/10.1016/J.JMAPRO.2017.03.012
  • Deb, S., Ghosh, K., Paul, S., Deb, S., Ghosh, K., & Paul, S. (2006). A neural network based methodology for machining operations selection in computer-aided process planning for rotationally symmetrical parts. Journal of Intelligent Manufacturing, 17(5), 557–569. https://doi.org/10.1007/S10845-006-0026-0
  • De Jong, A. W., Rubrico, J. I. U., Adachi, M., Nakamura, T., & Ota, J. (2019). A generalised makespan estimation for shop scheduling problems, using visual data and a convolutional neural network. International Journal of Computer Integrated Manufacturing, 32(6), 559–568. https://doi.org/10.1080/0951192X.2019.1599430
  • Denkena, B., Dittrich, M.-A., Nguyen, H. N., & Bild, K. (2021). Self-optimizing process planning of multi-step polishing processes. Production Engineering, 15(3–4), 563–571. https://doi.org/10.1007/s11740-021-01042-6
  • Denkena, B., Schmidt, J., & Krüger, M. (2014). Data mining approach for knowledge-based process planning. Procedia Technology, 15, 406–415. https://doi.org/10.1016/J.PROTCY.2014.09.095
  • Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems with Applications, 166, 114060. https://doi.org/10.1016/J.ESWA.2020.114060
  • Dohale, V., Gunasekaran, A., Akarte, M., & Verma, P. (2021). An integrated Delphi-MCDM-Bayesian network framework for production system selection. International Journal of Production Economics, 242, 108296. https://doi.org/10.1016/j.ijpe.2021.108296
  • Escobar, C. A., & Morales-Menendez, R. (2018). Machine learning techniques for quality control in high conformance manufacturing environment. Advances in Mechanical Engineering, 10(2), 10. https://doi.org/10.1177/1687814018755519
  • Evans, L., Lohse, N., & Summers, M. (2013). A fuzzy-decision-tree approach for manufacturing technology selection exploiting experience-based information. Expert Systems with Applications, 40(16), 6412–6426. https://doi.org/10.1016/J.ESWA.2013.05.047
  • Fahle, S., Prinz, C., & Kuhlenkötter, B. (2020). Systematic review on machine learning (ML) methods for manufacturing processes – identifying artificial intelligence (AI) methods for field application. Procedia CIRP, 93, 413–418. https://doi.org/10.1016/J.PROCIR.2020.04.109
  • Finkeldey, F., Volke, J., Zarges, J. C., Heim, H. P., & Wiederkehr, P. (2020). Learning quality characteristics for plastic injection molding processes using a combination of simulated and measured data. Journal of Manufacturing Processes, 60, 134–143. https://doi.org/10.1016/J.JMAPRO.2020.10.028
  • Fredriksson, T., Bosch, J., Olsson, H. H., & Mattos, D. I. (2022). Machine learning algorithms for labeling: Where and how they are used? 2022 IEEE International Systems Conference (SysCon), 1–8. https://doi.org/10.1109/SysCon53536.2022.9773849
  • Fredriksson, T., Mattos, D. I., Bosch, J., & Olsson, H. H. (2020). Data labeling: An empirical investigation into industrial challenges and mitigation strategies. In J. A. M. Maurizio (Ed.), Product-focused software process improvement (pp. 202–216). Springer International Publishing.
  • Garouani, M., Ahmad, A., Bouneffa, M., Hamlich, M., Bourguin, G., & Lewandowski, A. (2022). Using meta-learning for automated algorithms selection and configuration: An experimental framework for industrial big data. Journal of Big Data, 9(1), 1–20. https://doi.org/10.1186/S40537-022-00612-4
  • Ghahramani, M., Qiao, Y., Zhou, M., Hagan, A., & Sweeney, J. (2020). AI-based modeling and data-driven evaluation for smart manufacturing processes. IEEE/CAA Journal of Automatica Sinica, 7(4), 1026–1037. https://doi.org/10.1109/JAS.2020.1003114
  • Gjelaj, A., Berisha, B., & Smaili, F. (2019). Optimization of turning process and cutting force using multiobjective genetic algorithm. Universal Journal of Mechanical Engineering, 7(2), 64–70. https://doi.org/10.13189/UJME.2019.070204
  • Godreau, V., Ritou, M., Chové, E., Furet, B., & Dumur, D. (2019). Continuous improvement of HSM process by data mining. Journal of Intelligent Manufacturing, 30(7), 2781–2788. https://doi.org/10.1007/S10845-018-1426-7
  • Gonzalez Rodriguez, G., Gonzalez-Cava, J. M., & Méndez Pérez, J. A. (2020). An intelligent decision support system for production planning based on machine learning. Journal of Intelligent Manufacturing, 31(5), 1257–1273. https://doi.org/10.1007/S10845-019-01510-Y
  • Grant, M. J., & Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/J.1471-1842.2009.00848.X
  • Grasso, M., Laguzza, V., Semeraro, Q., & Colosimo, B. M. (2017). In-process monitoring of selective laser melting: Spatial detection of defects via image data analysis. Journal of Manufacturing Science and Engineering, 139(5). https://doi.org/10.1115/1.4034715
  • Gülçür, M., & Whiteside, B. (2021). A study of micromanufacturing process fingerprints in micro-injection moulding for machine learning and industry 4.0 applications. The International Journal of Advanced Manufacturing Technology, 115(5–6), 1943–1954. https://doi.org/10.1007/S00170-021-07252-7
  • Guo, S., & Guo, W. (2022). Process monitoring and fault prediction in multivariate time series using bag-of-words. IEEE Transactions on Automation Science and Engineering, 19(1), 230–242. https://doi.org/10.1109/TASE.2020.3026065
  • Guo, W., Wu, C., Ding, Z., & Zhou, Q. (2021). Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding. The International Journal of Advanced Manufacturing Technology, 112(9–10), 2853–2871. https://doi.org/10.1007/S00170-020-06523-Z
  • Hamouche, E., & Loukaides, E. G. (2018). Classification and selection of sheet forming processes with machine learning. International Journal of Computer Integrated Manufacturing, 31(9), 921–932. https://doi.org/10.1080/0951192X.2018.1429668
  • Hanhirova, J., Harjuhahto, J., Harjuhahto, J., & Hirvisalo, V. (2019). A machine learning based quality control system for power cable manufacturing. IEEE International Conference on Industrial Informatics (INDIN), 2019-July, 193–198. https://doi.org/10.1109/INDIN41052.2019.8972281
  • Herriott, C., & Spear, A. D. (2020). Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods. Computational Materials Science, 175, 109599. https://doi.org/10.1016/J.COMMATSCI.2020.109599
  • He, Z., Tran, K. P., Thomassey, S., Zeng, X., Xu, J., & Yi, C. (2022). Multi-objective optimization of the textile manufacturing process using deep-Q-network based multi-agent reinforcement learning. Journal of Manufacturing Systems, 62, 939–949. https://doi.org/10.1016/J.JMSY.2021.03.017
  • Hodonou, C., Kerbrat, O., Balazinski, M., & Brochu, M. (2020). Process selection charts based on economy and environment: Subtractive or additive manufacturing to produce structural components of aircraft. International Journal on Interactive Design & Manufacturing (IjideM), 14(3), 861–873. https://doi.org/10.1007/S12008-020-00663-Y
  • Hoefer, M. J., & Frank, M. C. (2018). Automated manufacturing process selection during conceptual design. Journal of Mechanical Design, Transactions of the ASME, 140(3). https://doi.org/10.1115/1.4038686
  • Ip, C. Y., & Regli, W. C. (2006). A 3D object classifier for discriminating manufacturing processes. Computers & Graphics, 30(6), 903–916. https://doi.org/10.1016/J.CAG.2006.08.013
  • Jayawardane, H., Davies, I. J., Gamage, J. R., John, M., & Biswas, W. K. (2023). Sustainability perspectives – a review of additive and subtractive manufacturing. Sustainable Manufacturing and Service Economics, 2, 100015. https://doi.org/10.1016/J.SMSE.2023.100015
  • Jiang, J., Yu, C., Xu, X., Ma, Y., & Liu, J. (2020). Achieving better connections between deposited lines in additive manufacturing via machine learning. Mathematical Biosciences and Engineering, 4(4), 3382–3394. https://doi.org/10.3934/MBE.2020191
  • Kahng, H., & Kim, S. B. (2021). Self-supervised representation learning for wafer bin map defect pattern classification. IEEE Transactions on Semiconductor Manufacturing, 34(1), 74–86. https://doi.org/10.1109/TSM.2020.3038165
  • Kang, Z., Catal, C., & Tekinerdogan, B. (2020). Machine learning applications in production lines: A systematic literature review. Computers & Industrial Engineering, 149, 106773. https://doi.org/10.1016/J.CIE.2020.106773
  • Kankar, P. K., Sharma, S. C., & Harsha, S. P. (2011). Fault diagnosis of ball bearings using machine learning methods. Expert Systems with Applications, 38(3), 1876–1886. https://doi.org/10.1016/J.ESWA.2010.07.119
  • Kim, D. H., & Zohdi, T. I. (2022). Tool path optimization of selective laser sintering processes using deep learning. Computational Mechanics, 69(1), 383–401. https://doi.org/10.1007/s00466-021-02079-1
  • Kononenko, I., & Kukar, M. (2007). Machine learning and data mining. In Machine learning and data mining (pp. 1–36). Woodhead Publishing. https://doi.org/10.1533/9780857099440.1
  • Kopper, A., Karkare, R., Paffenroth, R. C., & Apelian, D. (2020). Model selection and evaluation for machine learning: Deep learning in materials processing. Integrating Materials and Manufacturing Innovation, 9(3), 287–300. https://doi.org/10.1007/s40192-020-00185-1
  • Kubik, C., Knauer, S. M., & Groche, P. (2021). Smart sheet metal forming: Importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking. Journal of Intelligent Manufacturing, 33(1), 259–282. https://doi.org/10.1007/S10845-021-01789-W
  • Kusiak, A. (2017). Smart manufacturing. International Journal of Production Research, 56(1–2), 508–517. https://doi.org/10.1080/00207543.2017.1351644
  • Leco, M., & Kadirkamanathan, V. (2021). A perturbation signal based data-driven Gaussian process regression model for in-process part quality prediction in robotic countersinking operations. Robotics and Computer-Integrated Manufacturing, 71, 102105. https://doi.org/10.1016/J.RCIM.2020.102105
  • Lee, C. Y., & Tsai, T. L. (2019). Data science framework for variable selection, metrology prediction, and process control in TFT-LCD manufacturing. Robotics and Computer-Integrated Manufacturing, 55, 76–87. https://doi.org/10.1016/J.RCIM.2018.07.013
  • Li, H. (2017). Improve the performance of a complex FMS with a hybrid machine learning algorithm. Journal of Software Engineering and Applications, 10(3), 257–272. https://doi.org/10.4236/JSEA.2017.103015
  • Lieber, D., Stolpe, M., Konrad, B., Deuse, J., & Morik, K. (2013). Quality prediction in interlinked manufacturing processes based on supervised & unsupervised machine learning. Procedia CIRP, 7, 193–198. https://doi.org/10.1016/J.PROCIR.2013.05.033
  • Li, X., Han, K., Li, D., Wang, J., Jianzheng, L., Wang, Y., & Ying, X. (2019). An overview of overfitting and its solutions. Journal of Physics: Conference Series, 1168(2), 022022. https://doi.org/10.1088/1742-6596/1168/2/022022
  • Lin, C. C., Deng, D. J., Chih, Y. L., & Chiu, H. T. (2019). Smart manufacturing scheduling with edge computing using multiclass deep Q network. IEEE Transactions on Industrial Informatics, 15(7), 4276–4284. https://doi.org/10.1109/TII.2019.2908210
  • Link, P., Poursanidis, M., Schmid, J., Zache, R., von Kurnatowski, M., Teicher, U., & Ihlenfeldt, S. (2022). Capturing and incorporating expert knowledge into machine learning models for quality prediction in manufacturing. Journal of Intelligent Manufacturing, 33(7), 2129–2142. https://doi.org/10.1007/S10845-022-01975-4
  • Li, J., Pang, D., Zheng, Y., Guan, X., & Le, X. (2022). A flexible manufacturing assembly system with deep reinforcement learning. Control Engineering Practice, 118, 104957. https://doi.org/10.1016/J.CONENGPRAC.2021.104957
  • Liu, Y., Jin, M., Pan, S., Zhou, C., Zheng, Y., Xia, F., & Yu, P. (2022). Graph self-supervised learning: A survey. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2022.3172903
  • Liu, R., Kumar, A., Chen, Z., Agrawal, A., Sundararaghavan, V., & Choudhary, A. (2015). A predictive machine learning approach for microstructure optimization and materials design. Scientific Reports, 5(1), 1–12. https://doi.org/10.1038/srep11551
  • Liu, Z., Song, Y., Tang, R., Duan, G., & Tan, J. (2022). Few-shot defect recognition of metal surfaces via attention-embedding and self-supervised learning. Journal of Intelligent Manufacturing, 2022, 1–15. https://doi.org/10.1007/S10845-022-02022-Y
  • Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., & Tang, J. (2021). Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3090866
  • Long, J., Chen, Y., Cao, D., Chen, P., & Yang, M. (2023). Yield and properties prediction based on the multicondition LSTM model for the solvent deasphalting process. American Chemical Society Omega, 8(6), 5437–5450. https://doi.org/10.1021/ACSOMEGA.2C06624
  • Mahmood, J., Luo, M., & Rehman, M. (2022). An accurate detection of tool wear type in drilling process by applying PCA and one-hot encoding to SSA-BLSTM model. The International Journal of Advanced Manufacturing Technology, 118(11–12), 3897–3916. https://doi.org/10.1007/s00170-021-08200-1
  • Mahmoudi, M., Ezzat, A. A., & Elwany, A. (2019). Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing. Journal of Manufacturing Science and Engineering, 141(3). https://doi.org/10.1115/1.4042108
  • Maitra, V., Shi, J., & Lu, C. (2022). Robust prediction and validation of as-built density of ti-6Al-4V parts manufactured via selective laser melting using a machine learning approach. Journal of Manufacturing Processes, 78, 183–201. https://doi.org/10.1016/J.JMAPRO.2022.04.020
  • Manivannan, S. (2022). An ensemble-based deep semi-supervised learning for the classification of wafer bin maps defect patterns. Computers & Industrial Engineering, 172, 108614. https://doi.org/10.1016/J.CIE.2022.108614
  • Marini, D., & Corney, J. R. (2019). Process selection methodology for near net shape manufacturing. International Journal of Advanced Manufacturing Technology, 106(5–6), 1967–1987. https://doi.org/10.1007/S00170-019-04561-W
  • Martínez-Arellano, G., Terrazas, G., & Ratchev, S. (2019). Tool wear classification using time series imaging and deep learning. The International Journal of Advanced Manufacturing Technology, 104(9–12), 3647–3662. https://doi.org/10.1007/S00170-019-04090-6
  • McGregor, D. J., Bimrose, M. V., Shao, C., Tawfick, S., & King, W. P. (2022). Using machine learning to predict dimensions and qualify diverse part designs across multiple additive machines and materials. Additive Manufacturing, 55, 102848. https://doi.org/10.1016/J.ADDMA.2022.102848
  • Mehrjoo, S., & Bashiri, M. (2013). An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: An automotive industry case. Journal of Industrial Engineering International, 9(1), 1–12. https://doi.org/10.1186/2251-712X-9-14
  • Mei, S., Yuan, M., Cui, J., Dong, S., & Zhao, J. (2022). Machinery condition monitoring in the era of industry 4.0: A relative degree of contribution feature selection and deep residual network combined approach. Computers & Industrial Engineering, 168, 108129. https://doi.org/10.1016/J.CIE.2022.108129
  • Meng, L., McWilliams, B., Jarosinski, W., Park, H. Y., Jung, Y. G., Lee, J., & Zhang, J. (2020). Machine learning in additive manufacturing: A review. JOM, 72(6), 2363–2377. https://doi.org/10.1007/S11837-020-04155-Y
  • Mittal, S., Khan, M. A., & Wuest, T. (2016). Smart manufacturing: Characteristics and technologies. IFIP Advances in Information and Communication Technology, 492, 539–548. https://doi.org/10.1007/978-3-319-54660-5_48
  • Moges, T., Yang, Z., Jones, K., Feng, S., Witherell, P., & Lu, Y. (2021). Hybrid modeling approach for melt-pool prediction in laser powder bed fusion additive manufacturing. Journal of Computing and Information Science in Engineering, 21(5). https://doi.org/10.1115/1.4050044
  • Mönch, L., Zimmermann, J., & Otto, P. (2006). Machine learning techniques for scheduling jobs with incompatible families and unequal ready times on parallel batch machines. Engineering Applications of Artificial Intelligence, 19(3), 235–245. https://doi.org/10.1016/J.ENGAPPAI.2005.10.001
  • Mozaffar, M., Liao, S., Xie, X., Saha, S., Park, C., Cao, J., Liu, W. K., & Gan, Z. (2022). Mechanistic artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced manufacturing processes: Current state and perspectives. Journal of Materials Processing Technology, 302, 117485. https://doi.org/10.1016/J.JMATPROTEC.2021.117485
  • Mukherjee, R. (2017). Selection of sustainable process and essential indicators for decision making using machine learning algorithms. Process Integration & Optimization for Sustainability, 1(2), 153–163. https://doi.org/10.1007/S41660-017-0011-4
  • Mypati, O., Mukherjee, A., Debasish, M., Surjya Pal, K., Chakrabarti, P. P., Pal, A., & Mypati, O. (2023). A critical review on applications of artificial intelligence in manufacturing. Artificial Intelligence Review, 56(S1), 661–768. https://doi.org/10.1007/S10462-023-10535-Y
  • Nasir, V., & Cool, J. (2020). Intelligent wood machining monitoring using vibration signals combined with self-organizing maps for automatic feature selection. The International Journal of Advanced Manufacturing Technology, 108(5–6), 1811–1825. https://doi.org/10.1007/S00170-020-05505-5
  • Nassehi, A., Zhong, R. Y., Li, X., & Epureanu, B. I. (2022). Review of machine learning technologies and artificial intelligence in modern manufacturing systems. In Design and operation of production networks for mass personalization in the era of cloud technology (pp. 317–348). Elsevier. https://doi.org/10.1016/B978-0-12-823657-4.00002-6
  • Nti, I. K., Adekoya, A. F., Weyori, B. A., & Nyarko-Boateng, O. (2021). Applications of artificial intelligence in engineering and manufacturing: A systematic review. Journal of Intelligent Manufacturing, 33(6), 1581–1601. https://doi.org/10.1007/S10845-021-01771-6
  • Okaro, I. A., Jayasinghe, S., Sutcliffe, C., Black, K., Paoletti, P., & Green, P. L. (2019). Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Additive Manufacturing, 27, 42–53. https://doi.org/10.1016/J.ADDMA.2019.01.006
  • Oluyisola, O. E., Bhalla, S., Sgarbossa, F., & Strandhagen, J. O. (2022). Designing and developing smart production planning and control systems in the industry 4.0 era: A methodology and case study. Journal of Intelligent Manufacturing, 33(1), 311–332. https://doi.org/10.1007/s10845-021-01808-w
  • Ördek, B., & Borgianni, Y. (2023a). Application of unsupervised learning and image processing into classification of designs to be fabricated with additive or traditional manufacturing. Proceedings of the Design Society, 3, 613–622. https://doi.org/10.1017/pds.2023.62
  • Ördek, B., & Borgianni, Y. (2023b). Differentiating additive and traditional manufacturing processes through unsupervised learning and image processing. In Y. Borgianni, D. T. Matt, M. Molinaro, & G. Orzes (Eds.), Towards a smart, resilient and sustainable industry (pp. 552–563). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38274-1_46
  • Ördek, B., Borgianni, Y., & Coatanea, E. (2022). Classification framework for machine learning support in manufacturing. In T. MattDominik, R. Vidoni, E. Rauch, & D. Patrick (Eds.), Managing and implementing the digital transformation (Vol. 525, pp. 61–73). Springer. https://doi.org/10.1007/978-3-031-14317-5_6
  • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191
  • Papananias, M., McLeay, T. E., Obajemu, O., Mahfouf, M., & Kadirkamanathan, V. (2020). Inspection by exception: A new machine learning-based approach for multistage manufacturing. Applied Soft Computing, 97, 106787. https://doi.org/10.1016/J.ASOC.2020.106787
  • Park, I. B., Huh, J., Kim, J., & Park, J. (2020). A reinforcement learning approach to robust scheduling of semiconductor manufacturing facilities. IEEE Transactions on Automation Science and Engineering, 17(3), 1420–1431. https://doi.org/10.1109/TASE.2019.2956762
  • Park, H. S., Nguyen, D. S., Le-Hong, T., & van Tran, X. (2021). Machine learning-based optimization of process parameters in selective laser melting for biomedical applications. Journal of Intelligent Manufacturing, 33(6), 1843–1858. https://doi.org/10.1007/s10845-021-01773-4
  • Paturi, U. M. R., & Cheruku, S. (2021). Application and performance of machine learning techniques in manufacturing sector from the past two decades: A review. Materials Today: Proceedings, 38, 2392–2401. https://doi.org/10.1016/J.MATPR.2020.07.209
  • Peres, R. S., Barata, J., Leitao, P., & Garcia, G. (2019). Multistage quality control using machine learning in the automotive industry. IEEE Access, 7, 79908–79916. https://doi.org/10.1109/ACCESS.2019.2923405
  • Pham, D. T., & Afify, A. A. (2005). Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(5), 395–412. https://doi.org/10.1243/095440505X32274
  • Pilania, G., Wang, C., Jiang, X., Rajasekaran, S., & Ramprasad, R. (2013). Accelerating materials property predictions using machine learning. Scientific Reports, 3(1), 1–6. https://doi.org/10.1038/srep02810
  • Pratama, M., Dimla, E., Tjahjowidodo, T., Pedrycz, W., & Lughofer, E. (2020). Online tool condition monitoring based on parsimonious ensemble+. IEEE Transactions on Cybernetics, 50(2), 664–677. https://doi.org/10.1109/TCYB.2018.2871120
  • Priore, P., Ponte, B., Puente, J., & Gómez, A. (2018). Learning-based scheduling of flexible manufacturing systems using ensemble methods. Computers & Industrial Engineering, 126, 282–291. https://doi.org/10.1016/J.CIE.2018.09.034
  • Qi, X., Chen, G., Li, Y., Cheng, X., & Li, C. (2019). Applying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectives. Engineering, 5(4), 721–729. https://doi.org/10.1016/J.ENG.2019.04.012
  • Qin, J., Hu, F., Liu, Y., Witherell, P., Wang, C. C. L., Rosen, D. W., Simpson, T. W., Lu, Y., & Tang, Q. (2022). Research and application of machine learning for additive manufacturing. Additive Manufacturing, 52, 102691. https://doi.org/10.1016/J.ADDMA.2022.102691
  • Radetzky, M., Rosebrock, C., & Bracke, S. (2019). Approach to adapt manufacturing process parameters systematically based on machine learning algorithms. IFAC-Papersonline, 52(13), 1773–1778. https://doi.org/10.1016/J.IFACOL.2019.11.458
  • Rajput, H. C., Milani, A. S., & Labun, A. (2011). Including time dependency and ANOVA in decision-making using the revised fuzzy AHP: A case study on wafer fabrication process selection. Applied Soft Computing, 11(8), 5099–5109. https://doi.org/10.1016/J.ASOC.2011.05.049
  • Reinders, C., Ackermann, H., Yang, M. Y., & Rosenhahn, B. (2019). Learning convolutional neural networks for object detection with very little training data. In M. Y. Y. Yang, B. Rosenhahn, & V. Murino (Eds.), Multimodal scene understanding: Algorithms, applications and Deep Learning (pp. 65–100). Elsevier. https://doi.org/10.1016/B978-0-12-817358-9.00010-X
  • Ren, L., Sun, Y., Cui, J., & Zhang, L. (2018). Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. Journal of Manufacturing Systems, 48, 71–77. https://doi.org/10.1016/J.JMSY.2018.04.008
  • Reséndiz-Flores, E. O., Navarro-Acosta, J. A., & García-Calvillo, I. D. (2022). Smart fault detection and optimal variables identification using kernel mahalanobis distance for industrial manufacturing processes. International Journal of Computer Integrated Manufacturing, 35(9), 942–950. https://doi.org/10.1080/0951192X.2022.2027019
  • Salehi, M., & Tavakkoli-Moghaddam, R. (2009). Application of genetic algorithm to computer-aided process planning in preliminary and detailed planning. Engineering Applications of Artificial Intelligence, 22(8), 1179–1187. https://doi.org/10.1016/J.ENGAPPAI.2009.04.005
  • Sandru, E. D., David, E., Kovacs, I., Buzo, A., Burileanu, C., & Pelz, G. (2022). Modeling the dependency of analog circuit performance parameters on manufacturing process variations with applications in sensitivity analysis and yield prediction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(1), 129–142. https://doi.org/10.1109/TCAD.2021.3054804
  • Saxena, A., & Saad, A. (2007). Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Applied Soft Computing, 7(1), 441–454. https://doi.org/10.1016/J.ASOC.2005.10.001
  • Scime, L., & Beuth, J. (2018). A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 24, 273–286. https://doi.org/10.1016/J.ADDMA.2018.09.034
  • Sener, Z., & Karsak, E. E. (2008). A decision making approach based on fuzzy regression and fuzzy multiple objective programming for advanced manufacturing technology selection. 2008 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2008, 964–968. https://doi.org/10.1109/IEEM.2008.4738013
  • Serrano-Ruiz, J. C., Mula, J., & Poler, R. (2022). Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the industry 4.0 perspective. Journal of Manufacturing Systems, 63, 185–202. https://doi.org/10.1016/J.JMSY.2022.03.011
  • Shahrabi, J., Adibi, M. A., & Mahootchi, M. (2017). A reinforcement learning approach to parameter estimation in dynamic job shop scheduling. Computers & Industrial Engineering, 110, 75–82. https://doi.org/10.1016/J.CIE.2017.05.026
  • Shao, X., & Kim, C. S. (2021). Self-supervised long-short term memory network for solving complex job shop scheduling problem. KSII Transactions on Internet & Information Systems, 15(8), 2993–3010. https://doi.org/10.3837/TIIS.2021.08.016
  • Shao, C., Paynabar, K., Kim, T. H., Jin, J., Hu, S. J., Spicer, J. P., Wang, H., & Abell, J. A. (2013). Feature selection for manufacturing process monitoring using cross-validation. Journal of Manufacturing Systems, 32(4), 550–555. https://doi.org/10.1016/J.JMSY.2013.05.006
  • Sharp, M., Ak, R., & Hedberg, T. (2018). A survey of the advancing use and development of machine learning in smart manufacturing. Journal of Manufacturing Systems, 48, 170–179. https://doi.org/10.1016/J.JMSY.2018.02.004
  • Shiue, Y. R. (2009). Development of two-level decision tree-based real-time scheduling system under product mix variety environment. Robotics and Computer-Integrated Manufacturing, 25(4–5), 709–720. https://doi.org/10.1016/J.RCIM.2008.06.002
  • Silva, R. F., Mostaço, G. M., Xavier, F., Saraiva, A. M., & Cugnasca, C. E. (2022). Use of unsupervised machine learning for agricultural supply chain data labeling. In P. P. M. Bochtis & D. Dionysis (Eds.), Information and communication technologies for agriculture—theme II: Data (pp. 267–288). Springer International Publishing. https://doi.org/10.1007/978-3-030-84148-5_11
  • Simeone, A., Zeng, Y., & Caggiano, A. (2021). Intelligent decision-making support system for manufacturing solution recommendation in a cloud framework. The International Journal of Advanced Manufacturing Technology, 112(3–4), 1035–1050. https://doi.org/10.1007/s00170-020-06389-1
  • Song, K., Wang, M., Liu, L., Wang, C., Zan, T., & Yang, B. (2020). Intelligent recognition of milling cutter wear state with cutting parameter independence based on deep learning of spindle current clutter signal. The International Journal of Advanced Manufacturing Technology, 109(3–4), 929–942. https://doi.org/10.1007/S00170-020-05587-1
  • Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2012). Experimental investigation and empirical modelling of FDM process for compressive strength improvement. Journal of Advanced Research, 3(1), 81–90. https://doi.org/10.1016/J.JARE.2011.05.001
  • Srinivasan, S., Swick, B., Groeber, M. A., Srinivasan, S., Swick, B., & Groeber, M. A. (2020). Laser powder bed fusion parameter selection via machine-learning-augmented process modeling. JOM, 72(12), 4393–4403. https://doi.org/10.1007/S11837-020-04383-2
  • Strasser, S., Tripathi, S., & Kerschbaumer, R. (2018). An approach for adaptive parameter setting in manufacturing processes. DATA 2018 - Proceedings of the 7th International Conference on Data Science, Technology and Applications, 24–32. https://doi.org/10.5220/0006894600240032
  • Sun, I. C., Cheng, R. C., & Chen, K. S. (2022). Evaluation of transducer signature selections on machine learning performance in cutting tool wear prognosis. The International Journal of Advanced Manufacturing Technology, 119(9–10), 6451–6468. https://doi.org/10.1007/S00170-021-08526-W
  • Tan, Q., Tong, Y., Wu, S., & Li, D. (2019). Modeling, planning, and scheduling of shop-floor assembly process with dynamic cyber-physical interactions: A case study for CPS-based smart industrial robot production. The International Journal of Advanced Manufacturing Technology, 105(9), 3979–3989. https://doi.org/10.1007/S00170-019-03940-7
  • Tian, W., Zhao, F., Min, C., Feng, X., Liu, R., Mei, X., & Chen, G. (2022). Broad learning system based on binary grey wolf optimization for surface roughness prediction in slot milling. IEEE Transactions on Instrumentation and Measurement, 71, 1–10. https://doi.org/10.1109/TIM.2022.3144232
  • Torquato, M. F., Martínez-Ayuso, G., Fahmy, A. A., & Sienz, J. (2021). Multi-objective optimization of electric arc furnace using the non-dominated sorting genetic algorithm II. IEEE Access, 9, 149715–149731. https://doi.org/10.1109/ACCESS.2021.3125519
  • Venkataraman, K., Vijaya Ramnath, B., Sarvesh, R., & Rohit Prasanna, C. (2015). Selection of manufacturing method using artificial neural network. Applied Mechanics and Materials, 766–767, 1201–1206. https://doi.org/10.4028/www.scientific.net/amm.766-767.1201
  • Wang, J., Cheng, X., Gao, Y., Wang, X., & Yang, J. (2022). Cutting force embedded manifold learning for condition monitoring of vertical machining center. IEEE Transactions on Instrumentation and Measurement, 71, 1–12. https://doi.org/10.1109/TIM.2022.3216413
  • Wang, T., Qiao, M., Zhang, M., Yang, Y., & Snoussi, H. (2020). Data-driven prognostic method based on self-supervised learning approaches for fault detection. Journal of Intelligent Manufacturing, 31(7), 1611–1619. https://doi.org/10.1007/S10845-018-1431-X
  • Wang, C., Tan, X. P., Tor, S. B., & Lim, C. S. (2020). Machine learning in additive manufacturing: State-of-the-art and perspectives. Additive Manufacturing, 36, 101538. https://doi.org/10.1016/J.ADDMA.2020.101538
  • Wang, B., Wang, P., Song, J., Lam, Y. C., Song, H., Wang, Y., & Liu, S. (2022). A hybrid machine learning approach to determine the optimal processing window in femtosecond laser-induced periodic nanostructures. Journal of Materials Processing Technology, 308, 117716. https://doi.org/10.1016/J.JMATPROTEC.2022.117716
  • Wanigasekara, C., Oromiehie, E., Swain, A., Prusty, B. G., & Nguang, S. K. (2020). Machine learning based predictive model for AFP-Based unidirectional composite laminates. IEEE Transactions on Industrial Informatics, 16(4), 2315–2324. https://doi.org/10.1109/TII.2019.2932398
  • Weiss, K., Khoshgoftaar, T. M., & Wang, D. D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 1–40. https://doi.org/10.1186/S40537-016-0043-6
  • Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: Advantages, challenges, and applications. Production & Manufacturing Research, 4(1), 23–45. https://doi.org/10.1080/21693277.2016.1192517
  • Wu, P., He, Y., Li, Y., He, J., Liu, X., & Wang, Y. (2022). Multi-objective optimisation of machining process parameters using deep learning-based data-driven genetic algorithm and TOPSIS. Journal of Manufacturing Systems, 64, 40–52. https://doi.org/10.1016/J.JMSY.2022.05.016
  • Wu, W., Huang, Z., Zeng, J., & Fan, K. (2021). A fast decision-making method for process planning with dynamic machining resources via deep reinforcement learning. Journal of Manufacturing Systems, 58, 392–411. https://doi.org/10.1016/J.JMSY.2020.12.015
  • Wu, D., Wei, Y., & Terpenny, J. (2018). Predictive modelling of surface roughness in fused deposition modelling using data fusion. International Journal of Production Research, 57(12), 3992–4006. https://doi.org/10.1080/00207543.2018.1505058
  • Xie, Y., Zhang, C., & Liu, Q. (2021). Tool wear status recognition and prediction model of milling cutter based on deep learning. IEEE Access, 9, 1616–1625. https://doi.org/10.1109/ACCESS.2020.3047205
  • Xiong, J., Zhang, G., Hu, J., & Wu, L. (2012). Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. Journal of Intelligent Manufacturing, 25(1), 157–163. https://doi.org/10.1007/S10845-012-0682-1
  • Xu, R., Hao, R., & Huang, B. (2022). Efficient surface defect detection using self-supervised learning strategy and segmentation network. Advanced Engineering Informatics, 52, 101566. https://doi.org/10.1016/J.AEI.2022.101566
  • Yang, S. D., Ali, Z. A., Kwon, H., & Wong, B. M. (2022). Predicting complex erosion profiles in steam distribution headers with convolutional and recurrent neural networks. Industrial and Engineering Chemistry Research, 61(24), 8520–8529. https://doi.org/10.1021/ACS.IECR.1C04712
  • Yan, H., Sergin, N. D., Brenneman, W. A., Lange, S. J., & Ba, S. (2021). Deep multistage multi-task learning for quality prediction of multistage manufacturing systems. Journal of Quality Technology, 53(5), 526–544. https://doi.org/10.1080/00224065.2021.1903822
  • Yu, T., Huang, J., & Chang, Q. (2020). Mastering the working sequence in human-robot collaborative assembly based on reinforcement learning. IEEE Access, 8, 163868–163877. https://doi.org/10.1109/ACCESS.2020.3021904
  • Zhang, Y., & Fiona, Z. Y. (2022). A Web-based automated manufacturability analyzer and recommender for additive manufacturing (MAR-AM) via a hybrid machine learning model. Expert Systems with Applications, 199, 117189. https://doi.org/10.1016/J.ESWA.2022.117189
  • Zhang, X., Hou, T., Hao, Y., Shangguan, H., Wang, A., & Peng, S. (2021). Surface defect detection of solar cells based on multiscale region proposal fusion network. IEEE Access, 9, 62093–62101. https://doi.org/10.1109/ACCESS.2021.3074219
  • Zhang, X., Kano, M., Tani, M., Mori, J., Ise, J., & Harada, K. (2020). Prediction and causal analysis of defects in steel products: Handling nonnegative and highly overdispersed count data. Control Engineering Practice, 95, 104258. https://doi.org/10.1016/J.CONENGPRAC.2019.104258
  • Zhang, B., Liu, S., & Shin, Y. C. (2019). In-process monitoring of porosity during laser additive manufacturing process. Additive Manufacturing, 28, 497–505. https://doi.org/10.1016/J.ADDMA.2019.05.030
  • Zhang, Z., Ren, W., Yang, Z., & Wen, G. (2020). Real-time seam defect identification for Al alloys in robotic arc welding using optical spectroscopy and integrating learning. Measurement, 156, 107546. https://doi.org/10.1016/J.MEASUREMENT.2020.107546
  • Zhang, M., Sun, C. N., Zhang, X., Goh, P. C., Wei, J., Hardacre, D., & Li, H. (2019). High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. International Journal of Fatigue, 128, 105194. https://doi.org/10.1016/J.IJFATIGUE.2019.105194
  • Zhao, C., Dinar, M., & Melkote, S. N. (2022). A data-driven framework for learning the capability of manufacturing process sequences. Journal of Manufacturing Systems, 64, 68–80. https://doi.org/10.1016/J.JMSY.2022.05.009
  • Zhou, T., Tang, D., Zhu, H., & Wang, L. (2021). Reinforcement learning with composite rewards for production scheduling in a smart factory. IEEE Access, 9, 752–766. https://doi.org/10.1109/ACCESS.2020.3046784
  • Zhou, C. C., Yin, G. F., & Hu, X. B. (2009). Multi-objective optimization of material selection for sustainable products: Artificial neural networks and genetic algorithm approach. Materials & Design, 30(4), 1209–1215. https://doi.org/10.1016/J.MATDES.2008.06.006