87
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Molecular testing for the study of non-syndromic hearing loss

ORCID Icon, &

References

  • Koffler T, Ushakov K, Avraham KB. Genetics of hearing loss: syndromic. Otolaryngol Clin North Am. 2015;48(6):1041–1061.
  • Zahnert T. Differenzialdiagnose Der Schwerhörigkeit. Deutsches Arzteblatt. 2011;108(25):433–444.
  • Smith RJ, Shearer AE, Hildebrand MS, et al. Deafness and hereditary hearing loss overview. Seattle: University of Washington; 2014.
  • Bademci G, Cengiz FB, Foster J, et al. Variations in multiple syndromic deafness genes mimic non-syndromic hearing loss. Sci Rep. 2016;6:31622.
  • Ideura M, Nishio S. Y, Moteki H, et al. Comprehensive analysis of syndromic hearing loss patients in Japan. Sci Rep. 2019;9(1):11976.
  • Morgan A, Lenarduzzi S, Cappellani S, et al. Genomic studies in a large cohort of hearing impaired italian patients revealed several new alleles, a rare case of uniparental disomy (UPD) and the importance to search for copy number variations. Front Genet. 2018;9:681.
  • Cabanillas R, Diñeiro M, Cifuentes GA, et al. Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in Spanish patients. BMC Med Genomics. 2018;11(1):58.
  • Azaiez H, Decker AR, Booth KT, et al. HOMER2, a stereociliary scaffolding protein, is essential for normal hearing in humans and mice. PLoS Genet. 2015;11(3):e1005137.
  • Morgan A, Koboldt DC, Barrie ES, et al. Mutations in PLS1, encoding fimbrin, cause autosomal dominant nonsyndromic hearing loss. Hum Mutat. 2019;40(12):2286–2295.
  • Shearer AE, Kolbe DL, Azaiez H, et al. Copy number variants are a common cause of non-syndromic hearing loss. Genome Med. 2014;6(5):37.
  • Hilgert N, Smith RJH, Van Camp G. Function and expression pattern of nonsyndromic deafness genes. Curr Mol Med. 2009;9(5):546–564.
  • Roizen NJ. Nongenetic causes of hearing loss. Ment Retard Dev Disabil Res Rev. 2003;9(2):120–127.
  • Kenneson A, Van Naarden Braun K, Boyle C. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a huge review. Genet Med. 2002;4(4):258–274.
  • Del Castillo FJ, Rodríguez-Ballesteros M, Álvarez A, et al. A novel deletion involving the connexin-30 gene, del(GJB6-D13s1854), found in trans with mutations in the GJB2 Gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet. 2005;42(7):588–594.
  • Guaran V, Astolfi L, Castiglione A, et al. Association between idiopathic hearing loss and mitochondrial DNA mutations: a study on 169 hearing-impaired subjects. Int J Mol Med. 2013;32(4):785–794.
  • Kenna MA, Feldman HA, Neault MW, et al. Audiologic phenotype and progression in GJB2 (connexin 26) hearing loss. Arch Otolaryngol Head Neck Surg. 2010;136(1):81–87.
  • Del Castillo FJ, Del Castillo I. DFNB1 non-syndromic hearing impairment: diversity of mutations and associated phenotypes. Front Mol Neurosci. 2017;10:428.
  • Khalifa Alkowari M, Girotto G, Abdulhadi K, et al. GJB2 and GJB6 genes and the A1555G mitochondrial mutation are only minor causes of nonsyndromic hearing loss in the qatari population. Int J Audiol. 2012;51(3):181–185.
  • Chan DK, Chang KW. GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope. 2014;124(2):E34–E53.
  • Worden CP, Jeyakumar A. Systematic review of hearing loss genes in the African American population. Otol Neurotol. 2019;40(5):e488–e496.
  • Girotto G, Mezzavilla M, Abdulhadi K, et al. Consanguinity and hereditary hearing loss in Qatar. Hum Hered. 2014;77(1–4):175–182.
  • Azaiez H, Booth KT, Ephraim SS, et al. Genomic landscape and mutational signatures of deafness-associated genes. Am J Hum Genet. 2018;103(4):484–497.
  • Stenson PD, Mort M, Ball EV, et al. The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017;136(6):665–677.
  • Fokkema IFAC, Taschner PEM, Schaafsma GCP, et al. LOVD v.2.0: The next generation in gene variant databases. Hum Mutat. 2011;32(5):557–563.
  • Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062–D1067.
  • Sherry ST, Ward MH, Kholodov M, et al. DbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–311.
  • Karczewski KJ, Weisburd B, Thomas B, et al. The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res. 2017;45(D1):D840–D845.
  • Oza AM, DiStefano MT, Hemphill SE, et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat. 2018;39(11):1593–1613.
  • Schwarz JM, Rödelsperger C, Schuelke M, et al. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7(8):575–576.
  • Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using polyphen-2. Curr Protoc Hum Genet. 2013;76(1):7.20.1.–7.20.41.
  • Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–3814.
  • Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–315.
  • Desmet F-O, Hamroun D, Lalande M, et al. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):e67.
  • Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20(1):110–121.
  • Cooper GM, Stone EA, Asimenos G, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–913.
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–423.
  • Sloan-Heggen CM, Bierer AO, Shearer AE, et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet. 2016;135(4):441–450.
  • Budde BS, Aly MA, Mohamed MR, et al. Comprehensive molecular analysis of 61 Egyptian families with hereditary nonsyndromic hearing loss. Clin Genet. 2020;98(1):32–42.
  • Chen S, Dong C, Wang Q, et al. Targeted next-generation sequencing successfully detects causative genes in Chinese patients with hereditary hearing loss. Genet Test Mol Biomarkers. 2016;20(11):660–665.
  • Alkowari MK, Vozzi D, Bhagat S, et al. Targeted sequencing identifies novel variants involved in autosomal recessive hereditary hearing loss in Qatari families. Mutat Res Mol Mech Mutagen. 2017;800–802:29–36.
  • Francey LJ, Conlin LK, Kadesch HE, et al. Genome-wide SNP genotyping identifies the stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am J Med Genet A. 2012;158A(2):298–308.
  • Fontana P, Morgutti M, Pecile V, et al. A novel OTOA mutation in an Italian family with hearing loss. Gene Rep. 2017;9:111–114.
  • Marková SP, Brožková DŠ, Laššuthová P, et al. STRC gene mutations, mainly large deletions, are a very important cause of early-onset hereditary hearing loss in the Czech population. Genet Test Mol Biomarkers. 2018;22(2):127–134.
  • Čada Z, Šafka Brožková D, Balatková Z, et al. Moderate sensorineural hearing loss is typical for DFNB16 caused by various types of mutations affecting the STRC gene. Eur Arch Otorhinolaryngol. 2019;276(12):3353–3358.
  • Zhang Y, Malekpour M, Al-Madani N, et al. Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. BMJ Case Rep. 2009;2009(jan 211):bcr0820080645.
  • Yokota Y, Moteki H, Nishio S. y, et al. Frequency and clinical features of hearing loss caused by STRC deletions. Sci Rep. 2019;9(1):4408.
  • Vona B, Müller M, Dofek S, et al. A big data perspective on the genomics of hearing loss. Laryngorhinootologie. 2019;98:S1–S26.
  • Vona B, Hofrichter MAH, Neuner C, et al. DFNB16 is a frequent cause of congenital hearing impairment: implementation of STRC mutation analysis in routine diagnostics. Clin Genet. 2015;87(1):49–55.
  • Dharmadhikari AV, Ghosh R, Yuan B, et al. Copy number variant and runs of homozygosity detection by microarrays enabled more precise molecular diagnoses in 11,020 clinical exome cases. Genome Med. 2019;11(1):30.
  • Hoppman N, Aypar U, Brodersen P, et al. Genetic testing for hearing loss in the United States should include deletion/duplication analysis for the deafness/infertility locus at 15q15.3. Mol Cytogenet. 2013;6(1):19.
  • Sobreira N, Schiettecatte F, Valle D, et al. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928–930.
  • Bademci G, Abad C, Incesulu A, et al. MPZL2 is a novel gene associated with autosomal recessive nonsyndromic moderate hearing loss. Hum Genet. 2018;137(6–7):479–486.
  • Usami S, Nishio S, Moteki H, et al. Cochlear implantation from the perspective of genetic background. Anat Rec (Hoboken). 2020;303(3):563–593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.