259
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Inner ear gene delivery: vectors and routes

ORCID Icon, , &

References

  • World Health Organization. Deafness and hearing loss; 2020 [cited 2020 Jun 27]. Available from: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
  • Duman D, Tekin M. Autosomal recessive nonsyndromic deafness genes: a review. Front Biosci (Landmark Ed). 2012;17:2213–2236.
  • Brough DE, et al. Mechanisms of adenovirus vector gene delivery to the inner ear. Mol Ther. 2004;9:S204.
  • Hakuba N, Watabe K, Hyodo J, et al. Adenovirus-mediated overexpression of a gene prevents hearing loss and progressive inner hair cell loss after transient cochlear ischemia in gerbils. Gene Ther. 2003;10(5):426–433.
  • Shu Y, Tao Y, Li W, et al. Adenovirus vectors target several cell subtypes of mammalian inner ear in vivo. Neural Plast. 2016;2016:9409846.
  • Stevenson SC, et al. Atonal adenoviral gene therapy results in hair cell regeneration and partial recovery of auditory function after ototoxin injury. Mol Ther. 2014;22:S210.
  • Lalwani AK, Walsh BJ, Reilly PG, et al. Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Ther. 1996;3(7):588–592.
  • Lalwani A, Walsh B, Reilly P, et al. Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus. Gene Ther. 1998;5(2):277–281.
  • Lalwani AK, et al. Expression of adeno-associated virus integrated transgene within the mammalian vestibular organs. Am J Otol. 1998;19(3):390–395.
  • Lalwani AK, et al. In vitro and in vivo assessment of the ability of adeno-associated virus - Brain-derived neurotrophic factor to enhance spiral ganglion cell survival following ototoxic insult. Laryngoscope. 2002;112(8 I):1325–1334.
  • Han JJ, Mhatre AN, Wareing M, et al. Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum Gene Ther. 1999;10(11):1867–1873.
  • Bedrosian JC, Gratton MA, Brigande JV, et al. In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol Ther. 2006;14(3):328–335.
  • Pan S, Wan J, Liu S, et al. Lentivirus carrying the Atoh1 gene infects normal rat cochlea. Neural Regen Res. 2013;8(17):1551–1559.
  • Chen X, Frisina RD, Bowers WJ, et al. HSV amplicon-mediated neurotrophin-3 expression protects murine spiral ganglion neurons from cisplatin-induced damage. Mol Ther. 2001;3(6):958–963.
  • Praetorius M, Knipper M, Schick B, et al. A novel vestibular approach for gene transfer into the inner ear. Audiol Neurootol. 2002;7(6):324–334.
  • Derby ML, Sena-Esteves M, Breakefield XO, et al. Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors. Hear Res. 1999;134(1–2):1–8.
  • Kurioka T, Mizutari K, Niwa K, et al. Hyaluronic acid pretreatment for Sendai virus-mediated cochlear gene transfer. Gene Ther. 2016;23(2):187–195.
  • Kanzaki S, Shiotani A, Inoue M, et al. Sendai virus vector-mediated transgene expression in the cochlea in vivo. Audiol Neurootol. 2007;12(2):119–126.
  • Sacheli R, Delacroix L, Vandenackerveken P, et al. Gene transfer in inner ear cells: a challenging race. Gene Ther. 2013;20(3):237–247.
  • Sheffield AM, Gubbels SP, Hildebrand MS, et al. Viral vector tropism for supporting cells in the developing murine cochlea. Hear Res. 2011;277(1–2):28–36.
  • Chen H, Xing Y, Xia L, et al. AAV-mediated NT-3 overexpression protects cochleae against noise-induced synaptopathy. Gene Ther. 2018;25(4):251–259.
  • Akil O, Dyka F, Calvet C, et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci USA. 2019;116(10):4496–4501.
  • Al-Moyed H, et al. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol Med. 2019;11(1):01.
  • Kim M-A, Ryu N, Kim H-M, et al. Targeted gene delivery into the mammalian inner ear using synthetic serotypes of adeno-associated virus vectors. Mol Ther Methods Clin Dev. 2019;13:197–204.
  • Shu Y, Tao Y, Wang Z, et al. Identification of adeno-associated viral vectors that target neonatal and adult mammalian inner ear cell subtypes. Hum Gene Ther. 2016;27(9):687–699.
  • Landegger L, Pang B, Wassmer S, et al. Novel synthetic AAV efficiently transduces neurosensory hair cells in the cochlea. Mol Ther. 2016;24:S107.
  • Lee J, Nist-Lund C, Solanes P, et al. Efficient viral transduction in mouse inner ear hair cells with utricle injection and AAV9-PHP.B. Hear Res. 2020;394:107882.
  • Di Pasquale G, Rzadzinska A, Schneider ME, et al. A novel bovine virus efficiently transduces inner ear neuroepithelial cells. Mol Ther. 2005;11(6):849–855.
  • Crispino G, Di Pasquale G, Scimemi P, et al. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice. PLoS One [Electronic Resource]. 2011;6(8):e23279.
  • Gyorgy B, et al. Gene transfer with AAV9-PHP.B rescues hearing in a mouse model of usher syndrome 3A and transduces hair cells in a non-human primate. Mol Ther Meth Clin D. 2019;13:1–13.
  • Kilpatrick LA, Li Q, Yang J, et al. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther. 2011;18(6):569–578.
  • Boëda B, Weil D, Petit C. A specific promoter of the sensory cells of the inner ear defined by transgenesis. Hum Mol Genet. 2001;10(15):1581–1589.
  • Lalwani AK, Han JJ, Walsh BJ, et al. Green fluorescent protein as a reporter for gene transfer studies in the cochlea. Hear Res. 1997;114(1–2):139–147.
  • Askew C, Rochat C, Pan B, et al. Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med. 2015;7(295):295ra108.
  • Liu Y, Okada T, Sheykholeslami K, et al. Specific and efficient transduction of cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther. 2005;12(4):725–733.
  • Liu Y, Okada T, Nomoto T, et al. Promoter effects of adeno-associated viral vector for transgene expression in the cochlea in vivo. Exp Mol Med. 2007;39(2):170–175.
  • Gu X, Chai R, Guo L, et al. Transduction of adeno-associated virus vectors targeting hair cells and supporting cells in the neonatal mouse cochlea. Front Cell Neurosci. 2019;13:8.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555.
  • Heller LC. Principles of electroporation for gene therapy. In: Miklavcic D, editor, Handbook of electroporation. Cham: Springer International Publishing; 2016. p. 1–16.
  • Judge AD, Bola G, Lee ACH, et al. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. 2006;13(3):494–505.
  • Wareing M, Mhatre AN, Pettis R, et al. Cationic liposome mediated transgene expression in the guinea pig cochlea. Hear Res. 1999;128(1–2):61–69.
  • Okano T, Nakagawa T, Kita T, et al. Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear. Mol Ther. 2006;14(6):866–871.
  • Gao X, Tao Y, Lamas V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018;553(7687):217–221.
  • Chen GG, Xu YL. Polyethyenimine-polyethylene glycol as a gene transfer vector for spiral ganglion cells in vitro. Chinese J Tissue Eng Res. 2014;18(21):3345–3349.
  • Lee J-H, Lee MY, Lim Y, et al. Auditory disorders and future therapies with delivery systems. J Tissue Eng. 2018;9:2041731418808455.
  • Zhou H, Ma X, Liu Y, et al. Linear polyethylenimine-plasmid DNA nanoparticles are ototoxic to the cultured sensory epithelium of neonatal mice. Mol Med Rep. 2015;11(6):4381–4388.
  • Maeda Y, Fukushima K, Nishizaki K, et al. In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet. 2005;14(12):1641–1650.
  • Yoshimura H, Shibata SB, Ranum PT, et al. Targeted allele suppression prevents progressive hearing loss in the mature murine model of human TMC1 deafness. Mol Ther. 2019;27(3):681–690.
  • Gyorgy B, et al. Allele-specific gene disruption through discrimination of a single base change by S. aureus Cas9-KKH prevents progressive hearing loss after AAV-mediated gene delivery. Hum Gene Ther. 2019;30(11):A11–A12.
  • Kang W, et al. Adeno-associated virus vector enables safe and efficient Cas9 activation in neonatal and adult Cas9 knockin murine cochleae. Gene Therapy, 2020. DOI:10.1038/s41434-020-0124-1
  • Szeto B, Chiang H, Valentini C, et al. Inner ear delivery: challenges and opportunities. Laryngoscope Investig Otolaryngol. 2020;5(1):122–131.
  • Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res. 2016;338:52–63.
  • Goycoolea MV. Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol. 2001;121(4):437–447.
  • Brunner H. Attachment of the stapes to the oval window in man. AMA Arch Otolaryngol. 1954;59(1):18–29.
  • Salt AN, Hirose K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res. 2018;362:25–37.
  • Ikeda K, Morizono T. Changes of the permeability of round window membrane in otitis media. Arch Otolaryngol Head Neck Surg. 1988;114(8):895–897.
  • Aksit A, Arteaga DN, Arriaga M, et al. In-vitro perforation of the round window membrane via direct 3-D printed microneedles. Biomed Microdevices. 2018;20(2):47.
  • Chiang H, Yu M, Aksit A, et al. 3D-printed microneedles create precise perforations in human round window membrane in situ. Otol Neurotol. 2020;41(2):277–284.
  • Yu M, Arteaga DN, Aksit A, et al. Anatomical and functional consequences of microneedle perforation of round window membrane. Otol Neurotol. 2020;41(2):e280–e287.
  • Jero J, Tseng CJ, Mhatre AN, et al. A surgical approach appropriate for targeted cochlear gene therapy in the mouse. Hear Res. 2001;151(1–2):106–114.
  • Silverstein H, Thompson J, Rosenberg SI, et al. Silverstein Microwick. Otolaryngol Clin North Am. 2004;37(5):1019–1034.
  • Moon SK, Lim DJ. Intratympanic gene delivery of antimicrobial molecules in otitis media. Curr Allergy Asthma Rep. 2015;15(4):14.
  • Yoon JY, Yang K-J, Kim DE, et al. Intratympanic delivery of oligoarginine-conjugated nanoparticles as a gene (or drug) carrier to the inner ear. Biomaterials. 2015;73:243–253.
  • Wu X, Ding D, Jiang H, et al. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla. J Nanopart Res. 2012;14(1):708.
  • Hahn H, Salt AN, Biegner T, et al. Dexamethasone levels and base-to-apex concentration gradients in the scala tympani perilymph after intracochlear delivery in the guinea pig. Otol Neurotol. 2012;33(4):660–665.
  • Gassner D, Durham D, Pfannenstiel SC, et al. Canalostomy as a surgical approach for cochlear gene therapy in the rat. Anat Rec (Hoboken). 2012;295(11):1830–1836.
  • Isgrig K, Chien WW. Posterior semicircular canal approach for inner ear gene delivery in neonatal mouse. JoVE. 2018;133(133):02.
  • Yoshimura H, Shibata SB, Ranum PT, et al. Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation. Sci Rep. 2018;8(1):2980.
  • Dai C, Lehar M, Sun DQ, et al. Rhesus cochlear and vestibular functions are preserved after inner ear injection of saline volume sufficient for gene therapy delivery. J Assoc Res Otolaryngol. 2017;18(4):601–617.
  • Aksit A, Rastogi, S, Nadal, ML, et al. Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles. Drug Deliv Transl Res. 2020. DOI:10.1007/s13346-020-00782-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.