78
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The aftermath of tinnitus-inducing inner ear damage for auditory brainstem responses and MEMR imaging of central brain activity in the rat

ORCID Icon, , , ORCID Icon, , , & ORCID Icon show all

References

  • Canlon B, Theorell T, Hasson D. Associations between stress and hearing problems in humans. Hear Res. 2013;295:9–15.
  • Durai M, Searchfield G. Anxiety and depression, personality traits relevant to tinnitus: A scoping review. Int J Audiol. 2016;55(11):605–615.
  • Mazurek B, Szczepek AJ, Bruggemann P. Tinnitus - clinical symptoms and therapy. Laryngorhinootologie. 2017;96(1):47–59.
  • Shargorodsky J, Curhan GC, Farwell WR. Prevalence and characteristics of tinnitus among US adults. Am J Med. 2010;123(8):711–718.
  • Knipper M, Van Dijk P, Nunes I, et al. Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol. 2013;111:17–33.
  • Sedley W, Friston KJ, Gander PE, et al. An integrative tinnitus model based on sensory precision. Trends Neurosci. 2016;39(12):799–812.
  • Stefanescu RA, Shore SE. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus. J Neurophysiol. 2017;117(3):1229–1238.
  • de Lafuente V, Romo R. Neuronal correlates of subjective sensory experience. Nat Neurosci. 2005;8(12):1698–1703.
  • Galazyuk AV, Wenstrup JJ, Hamid MA. Tinnitus and underlying brain mechanisms. Curr Opin Otolaryngol Head Neck Surg. 2012;20(5):409–415.
  • Lockwood AH, Salvi RJ, Burkard RF. Tinnitus. N Engl J Med. 2002;347(12):904–910.
  • Shiomi Y, Tsuji J, Naito Y, et al. Characteristics of DPOAE audiogram in tinnitus patients. Hear Res. 1997;108(1–2):83–88.
  • Moller AR. Pathophysiology of tinnitus. Otolaryngol Clin North Am. 2003;36(2):249–266.
  • Saunders JC. The role of central nervous system plasticity in tinnitus. J Commun Disord. 2007 Jul-Aug;40(4):313–334.
  • Shore SE, Roberts LE, Langguth B. Maladaptive plasticity in tinnitus-triggers, mechanisms and treatment. Nat Rev Neurol. 2016;12(3):150–160.
  • Salvi RJ, Wang J, Ding D. Auditory plasticity and hyperactivity following cochlear damage. Hear Res. 2000;147(1–2):261–274.
  • Manzoor NF, Gao Y, Licari F, et al. Comparison and contrast of noise-induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear Res. 2013;295:114–123.
  • Robertson D, Bester C, Vogler D, et al. Spontaneous hyperactivity in the auditory midbrain: relationship to afferent input. Hear Res. 2013;295:124–129.
  • Turner BB. Tissue differences in the up-regulation of glucocorticoid-binding proteins in the rat. Endocrinology. 1986;118(3):1211–1216.
  • Chavez CM, McGaugh JL, Weinberger NM. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex. Neurobiol Learn Mem. 2009;91(4):382–392.
  • Munoz-Lopez MM, Mohedano-Moriano A, Insausti R. Anatomical pathways for auditory memory in primates. Front Neuroanat. 2010;4(129):1–13.
  • Kraus KS, Mitra S, Jimenez Z, et al. Noise trauma impairs neurogenesis in the rat hippocampus. Neuroscience. 2010;167(4):1216–1226.
  • Singer W, Zuccotti A, Jaumann M, et al. Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus [Research Support, Non-U.S. Gov't]. Mol Neurobiol. 2013;47(1):261–279.
  • Rüttiger L, Singer W, Panford-Walsh R, et al. The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats [Research Support, Non-U.S. Gov't]. PloS One. 2013;8(3):e57247.
  • Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29(45):14077–14085.
  • Knipper M, Panford-Walsh R, Singer W, et al. Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res. 2015;361(1):77–93.
  • Gröschel M, Muller S, Gotze R, et al. The possible impact of noise-induced Ca2+-dependent activity in the central auditory pathway: a manganese-enhanced MRI study. Neuroimage. 2011;57(1):190–197.
  • Cory DA, Schwartzentruber DJ, Mock BH. Ingested manganese chloride as a contrast agent for magnetic resonance imaging. Magn Reson Imaging. 1987;5(1):65–70.
  • Kang YS, Gore JC. Studies of tissue NMR relaxation enhancement by manganese. Dose and time dependences. Invest Radiol. 1984;19(5):399–407.
  • Silva AC, Lee JH, Aoki I, et al. Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed. 2004;17(8):532–543.
  • Takeda A. Manganese action in brain function. Brain Res Brain Res Rev. 2003;41(1):79–87.
  • Drapeau P, Nachshen DA. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol (Lond). 1984;348:493–510.
  • Narita K, Kawasaki F, Kita H. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res. 1990;510(2):289–295.
  • Altar CA, Cai N, Bliven T, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature. 1997;389(6653):856–860.
  • Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med. 1997;38(3):378–388.
  • Brozoski TJ, Ciobanu L, Bauer CA. Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI). Hear Res. 2007;228(1–2):168–179.
  • Yu X, Wadghiri YZ, Sanes DH, et al. In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci. 2005;8(7):961–968.
  • Matt L, Eckert P, Panford-Walsh R, et al. Visualizing BDNF transcript usage during sound-induced memory linked plasticity. Front Mol Neurosci. 2018;11:260.
  • House JW, Brackmann DE. Tinnitus: surgical treatment. Ciba Found Symp. 1981;85:204–216.
  • Hofmeier B, Wolpert S, Aldamer ES, et al. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus. Neuroimage Clin. 2018;20:637–649.
  • Langguth B, De Ridder D. Tinnitus: therapeutic use of superficial brain stimulation. Handb Clin Neurol. 2013;116:441–467.
  • Vanneste S, De Ridder D. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front Syst Neurosci. 2012;6:31.
  • Gao Y, Manzoor N, Kaltenbach JA. Evidence of activity-dependent plasticity in the dorsal cochlear nucleus, in vivo, induced by brief sound exposure. Hear Res. 2016;341:31–42.
  • Henderson D, Bielefeld EC, Harris KC, et al. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 2006;27(1):1–19.
  • Nordmann AS, Bohne BA, Harding GW. Histopathological differences between temporary and permanent threshold shift. Hear Res. 2000;139(1–2):13–30.
  • Basta D, Tzschentke B, Ernst A. Noise-induced cell death in the mouse medial geniculate body and primary auditory cortex. Neurosci Lett. 2005;381(1–2):199–204.
  • Kaltenbach JA, Godfrey DA, Neumann JB, et al. Changes in spontaneous neural activity in the dorsal cochlear nucleus following exposure to intense sound: relation to threshold shift. Hear Res. 1998;124(1–2):78–84.
  • Suneja SK, Potashner SJ, Benson CG. AMPA receptor binding in adult guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Exp Neurol. 2000;165(2):355–369.
  • Gröschel M, Gotze R, Ernst A, et al. Differential impact of temporary and permanent noise-induced hearing loss on neuronal cell density in the mouse central auditory pathway. J Neurotrauma. 2010;27(8):1499–1507.
  • Ouyang J, Pace E, Lepczyk L, et al. Blast-induced tinnitus and elevated central auditory and limbic activity in rats: a manganese-enhanced MRI and behavioral study. Sci Rep. 2017;7(1):4852.
  • Kim SY, Heo H, Kim DH, et al. Neural plastic changes in the subcortical auditory neural pathway after single-sided deafness in adult mice: a MEMRI study. Biomed Res Int. 2018;2018:8624745.
  • Sweeney-Reed CM, Lee H, Rampp S, et al. Thalamic interictal epileptiform discharges in deep brain stimulated epilepsy patients. J Neurol. 2016;263(10):2120–2126.
  • West AE, Pruunsild P, Timmusk T. Neurotrophins: transcription and translation. Handb Exp Pharmacol. 2014;220:67–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.