266
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Atypical neural oscillations in response to speech in infants and children with speech and language impairments: a systematic review

ORCID Icon & ORCID Icon

References

  • Gervain J. Gateway to language: the perception of prosody at birth. In Bartos H, den Dikken M, Barreti Z, Varadi T, editors. Boundaries crossed, at the interfaces of morphosyntax, phnolog, pragmatics, and semantics. Cham: Springer Publisher; 2018.
  • Nespor M, Vogel I. Prosodic phonology. Dordrecht: Foris Publications; 1986.
  • Selkirk E. On derived domains in sentence phonology. Phonology 1986;3:371–405.
  • Lorenzi A, Chaix B. Les modes de représentation du son. Repéré à. 2016. Available from: http://www.cochlea.eu/son/representation-du-son.
  • Zion Golumbic EM, Poeppel D, Schroeder CE. Temporal context in speech processing and attentional stream selection: a behavioral and neural perspective. Brain Lang. 2012;122(3):151–161.
  • Ghitza O. Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm. Front Psychol. 2011;2:130.
  • Giraud A-L, Poeppel D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci. 2012;15(4):511–517.
  • Ghitza O, Giraud A-L, Poeppel D. Neuronal oscillations and speech perception: critical-band temporal envelopes are the essence. Front Hum Neurosci. 2012;6:340.
  • Poeppel D. The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun. 2003;41(1):245–255.
  • Poeppel D. The neuroanatomic and neurophysiological infrastructure for speech and language. Curr Opin Neurobiol. 2014;28:142–149.
  • Schroeder CE, Wilson DA, Radman T, et al. Dynamics of active sensing and perceptual selection. Curr Opin Neurobiol. 2010;20(2):172–176.
  • Giroud J, Trébuchon A, Schön D, et al. Asymmetric sampling in human auditory cortex reveals spectral processing hierarchy. PLoS Biol. 2020;18(3):e3000207.
  • Peelle JE, Davis MH. Neural oscillations carry speech rhythm through to comprehension. Front Psychol. 2012;3:320.
  • Ghitza O. The theta-syllable: a unit of speech information defined by cortical function. Front Psychol. 2013;4:138.
  • Zoefel B, Archer-Boyd A, Davis MH. Phase entrainment of brain oscillations causally modulates neural responses to intelligible speech. Curr Biol. 2018;28(3):401–408.e5.
  • van Bree S, Sohoglu E, Davis MH, et al. Sustained neural rhythms reveal endogenous oscillations supporting speech perception. PLoS Biol. 2021;19(2):e3001142.
  • Jochaut D, Lehongre K, Saitovitch A, et al. Atypical coordination of cortical oscillations in response to speech in autism. Front Hum Neurosci. 2015;9:171.
  • Lehongre K, Ramus F, Villiermet N, et al. Altered low-γ sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron. 2011;72(6):1080–1090.
  • Hämäläinen JA, Rupp A, Soltész F, et al. Reduced phase locking to slow amplitude modulation in adults with dyslexia: an MEG study. NeuroImage. 2012;59(3):2952–2961.
  • Poelmans H, Luts H, Vandermosten M, et al. Auditory steady state cortical responses indicate deviant Phonemic-Rate processing in adults with dyslexia. Ear Hear. 2012;33(1):134–143.
  • Lehongre K, Morillon B, Giraud A-L, et al. Impaired auditory sampling in dyslexia: further evidence from combined fMRI and EEG. Front Hum Neurosci. 2013;7:454.
  • Soltész F, Szűcs D, Leong V, et al. Differential entrainment of neuroelectric Delta oscillations in developmental dyslexia. PLoS One. 2013;8(10):e76608.
  • Lizarazu M, Lallier M, Molinaro N, et al. Developmental evaluation of atypical auditory sampling in dyslexia: functional and structural evidence. Hum Brain Mapp. 2015;36(12):4986–5002.
  • Goswami U. A temporal sampling framework for developmental dyslexia. Trends Cogn Sci. 2011;15(1):3–10.
  • Benasich AA, Gou Z, Choudhury N, et al. Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav Brain Res. 2008;195(2):215–222.
  • Gou Z, Choudhury N, Benasich AA. Resting frontal gamma power at 16, 24 and 36 months predicts individual differences in language and cognition at 4 and 5 years. Behav Brain Res. 2011;220(2):263–270.
  • Tierney AL, Gabard-Durnam L, Vogel-Farley V, et al. Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PLoS One. 2012;7(6):e39127.
  • Power AJ, Mead N, Barnes L, et al. Neural entrainment to rhythmic speech in children with developmental dyslexia. Front Hum Neurosci. 2013;7:777.
  • Power AJ, Colling LJ, Mead N, et al. Neural encoding of the speech envelope by children with developmental dyslexia. Brain Lang. 2016;160:1–10.
  • Molinaro N, Lizarazu M, Lallier M, et al. Out-of-synchrony speech entrainment in developmental dyslexia: altered cortical speech tracking in dyslexia. Hum Brain Mapp. 2016;37(8):2767–2783.
  • Di Liberto GM, Peter V, Kalashnikova M, et al. Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. Neuroimage. 2018;175:70–79.
  • Heim S, Friedman JT, Keil A, et al. Reduced sensory oscillatory activity during rapid auditory processing as a correlate of language-learning impairment. J Neurolinguistics. 2011;24(5):538–555.
  • Vanvooren S, Poelmans H, Hofmann M, et al. Hemispheric asymmetry in auditory processing of speech envelope modulations in prereading children. J Neurosci. 2014;34(4):1523–1529.
  • De Vos A, Vanvooren S, Vanderauwera J, et al. Atypical neural synchronization to speech envelope modulations in dyslexia. Brain Lang. 2017a;164:106–117.
  • De Vos A, Vanvooren S, Vanderauwera J, et al. A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia. Cortex. 2017b;93:206–219.
  • Cantiani C, Ortiz-Mantilla S, Riva V, et al. Reduced left-lateralized pattern of event-related EEG oscillations in infants at familial risk for language and learning impairment. Neuroimage Clin. 2019;22:101778.
  • Goswami U, Huss M, Mead N, et al. Perception of patterns of musical beat distribution in phonological developmental dyslexia: significant longitudinal relations with word reading and reading comprehension. Cortex. 2013;49(5):1363–1376.
  • McAnally KI, Stein JF. Auditory temporal coding in dyslexia. Proc R Soc B Biol Sci. 1996;263(1373):961–965.
  • Saksida A, Iannuzzi S, Bogliotti C, et al. Phonological skills, visual attention span, and visual stress in developmental dyslexia. Dev Psychol. 2016;52(10):1503–1516.
  • Heim S, Keil A, Choudhury N, et al. Early gamma oscillations during rapid auditory processing in children with a language-learning impairment: changes in neural mass activity after training. Neuropsychologia. 2013;51(5):990–1001.
  • Cantiani C, Riva V, Piazza C, et al. Auditory discrimination predicts linguistic outcome in Italian infants with and without familial risk for language learning impairment. Dev Cogn Neurosci. 2016;20:23–34.
  • Benasich AA, Thomas JJ, Choudhury N, et al. The importance of rapid auditory processing abilities to early language development: evidence from converging methodologies. Dev Psychobiol. 2002;40(3):278–292.
  • Lizarazu M, Scotto di Covella L, van Wassenhove V, et al. Neural entrainment to speech and nonspeech in dyslexia: conceptual replication and extension of previous investigations. Cortex. 2021;137:160–178.
  • Werker JF, Hensch TK. Critical periods in speech perception: new directions. Annu Rev Psychol. 2015;66:173–196.
  • Ortiz Barajas MC, Guevara R, Gervain J. The origins and development of speech envelope tracking during the first months of life. Dev Cogn Neurosci. 2021;48:100915.
  • Cabrera L, Gervain J. Speech perception at birth: the brain encodes fast and slow temporal information. Sci Adv. 2020;6(30):eaba7830.
  • Nallet C, Gervain J. Neurodevelopmental preparedness for language in the neonatal brain. Annu Rev Dev Psychol. 2021;3(1):41–58.
  • Eggermont JJ, Moore JK. Morphological and functional development of the auditory nervous system. In: Werner L, Fay RR, Popper AN, editors. Human auditory development. New York: Springer; 2012. p. 61–105.
  • Barre N, Morgan A, Doyle LW, et al. Language abilities in children who were very preterm and/or very low birth weight: a meta-analysis. J Pediatr. 2011;158(5):766–774.e1.
  • Putnick DL, Bornstein MH, Eryigit-Madzwamuse S, et al. Long-Term stability of language performance in very preterm, Moderate-Late preterm, and term children. J Pediatr. 2017;181:74–79.e3.
  • Pritchard VE, Bora S, Austin NC, et al. Identifying very preterm children at educational risk using a school readiness framework. PEDIATRICS. 2014;134(3):e825–e832.
  • Herold B, Höhle B, Walch E, et al. Impaired word stress pattern discrimination in very-low-birthweight infants during the first 6 months of life. Dev Med Child Neurol. 2008;50(9):678–683.
  • Bisiacchi PS, Mento G, Suppiej A. Cortical auditory processing in preterm newborns: an ERP study. Biol Psychol. 2009;82(2):176–185.
  • Ragó A, Honbolygó F, Róna Z, et al. Effect of maturation on suprasegmental speech processing in full- and preterm infants: a mismatch negativity study. Res Dev Disabil. 2014;35(1):192–202.
  • Varga Z, Ragó A, Honbolygó F, et al. Disrupted or delayed? Stress discrimination among preterm as compared to full-term infants during the first year of life. Infant Behav Dev. 2021;62:101520.
  • Jansson-Verkasalo E, Ruusuvirta T, Huotilainen M, et al. Atypical perceptual narrowing in prematurely born infants is associated with compromised language acquisition at 2 years of age. BMC Neurosci. 2010;11(1):88.
  • Peña M, Pittaluga E, Mehler J. Language acquisition in premature and full-term infants. Proc Natl Acad Sci U S A. 2010;107(8):3823–3828.
  • Niparko JK, Tobey EA, Thal DJ, et al. Spoken language development in children following cochlear implantation. JAMA. 2010;303(15):1498–1506.
  • Prince P, Paul BT, Chen J, et al. Neural correlates of visual stimulus encoding and verbal working memory differ between cochlear implant users and normal-hearing controls. Eur J Neurosci. 2021;54(3):5016–5037.
  • Ladányi E, Persici V, Fiveash A, et al. Is atypical rhythm a risk factor for developmental speech and language disorders? WIREs Cogn Sci. 2020;11(5):e1528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.