1,364
Views
8
CrossRef citations to date
0
Altmetric
Full Length Articles

Effects of SiC and SiC-GNP additions on the mechanical properties and oxidation behavior of NbB2

ORCID Icon, , &
Pages 170-182 | Received 29 Oct 2018, Accepted 10 Feb 2019, Published online: 01 Apr 2019

References

  • Paul A, Jayaseelan DD, Venugopal S, et al. UHTC composites for hypersonic applications. J Am Ceram Soc Bull. 2012;91:22–28.
  • Wuchina E, Opila E, Opeka M, et al. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. The Electrochem Soc. 2007 Winter;16(4):30–36.
  • Wuchina E, Opeka M, Causey S, et al. Designing for ultrahigh-temperature applications: the mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N). J Mater Sci. 2004;39:5939–5949.
  • Otani S, Korsukova MM, Mitsuhashi T. Floating zone growth and high-temperature hardness of NbB2 and TaB2 single crystals. J Cryst Growth. 1998;194:430–433.
  • Nowotny H, Benesovsky F, Kieffer R. Beitrag zum Aufbau der Systeme Niob-Bor und Tantal-Bor (Contribution to building the systems niobium-boron and tantalum-boron). Z Metalkde. 1959;50:417–423.
  • Nunes CA, Kaczorowski D, Rogl P, et al. The NbB2-phase revisited: homogeneity range, defect structure, superconductivity. Acta Mater. 2005;53:3679–3687.
  • Sikder AS, Islam AKMA, Nuruzzaman M, et al. Superconducting NbB2: an ab initio study of elastic constants. Solid State Commun. 2006;137:253–256.
  • Fahrenholtz WG, Hilmas GE, Talmy IG, et al. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007;90:1347–1364.
  • Akin I, Kaya O. Microstructures and properties of silicon carbide- and graphene nanoplatelet-reinforced titanium diboride composites. J Alloy Compd. 2017;729:949–959.
  • Asl MS, Kakroudi MG. Characterization of hot-pressed graphene reinforced ZrB2-SiC composites. Mater Sci Eng A. 2015;625:385–392.
  • Zhang X, An Y, Han J, et al. Graphene nanosheet reinforced ZrB2-SiC ceramic composite by thermal reduction of graphene oxide. RSC Adv. 2015;5:47060–47065.
  • Yin Z, Yuan J, Xu W, et al. Graphene nanosheets toughened TiB2-based ceramic tool material by spark plasma sintering. Ceram Int. 2018;44:8977–8982.
  • Sedlak R, Kovalcikova A, Girman V, et al. Fracture characteristics of SiC/graphene platelet composites. J Eur Ceram Soc. 2017;37:4307–4314.
  • Nieto A, Lahiri D, Agarwal A. Nanodynamic mechanical behaviour of graphene nanoplatelet-reinforced tantalum carbide. Scripta Mater. 2013;69:678–681.
  • Nieto A, Lahiri D, Agarwal A. Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering. Mat Sci Eng A. 2013;582:338–346.
  • Leyarovska L, Leyarovski E. A search for superconductivity below 1 K in transition metal borides. J Less-Common Met. 1979;67:249–255.
  • Takahashi T, Kawamata S, Noguchi S, et al. Superconductivity and crystal growth of NbB2. Physica C. 2005;426:478–481.
  • Matsudaira T, Itoh H, Naka S, et al. Synthesis of niobium boride powder by solid state reaction between niobium and amorphous boron. J Less Common Met. 1989;155:207–214.
  • Iizumi K, Sekiya C, Okada S, et al. Mechanochemically assisted preparation of NbB2 powder. J Eur Ceram Soc. 2006;26:635–638.
  • Balci O, Agaogullari D, Ovecoglu ML, et al. Synthesis of niobium borides by powder metallurgy methods using Nb2O5, B2O3 and Mg blends. Trans Nonferrous Met Soc China. 2016;26:747–758.
  • Balci O, Agaogullari D, Muhaffel F, et al. Effect of sintering techniques on the microstructure and mechanical properties of niobium borides. J Eur Ceram Soc. 2016;36:3113–3123.
  • Sairam K, Sonber KJ, Murthy T, et al. Reaction spark plasma sintering of niobium diboride. Int J Refract Met Hard Mater. 2014;43:259–262.
  • Demirskyi D, Sakka Y. In situ fabrication of B4C–NbB2 eutectic composites by spark-plasma sintering. J Am Ceram Soc. 2014;97:2376–2378.
  • Demirskyi D, Vasylkiv O. Mechanical properties of SiC–NbB2 eutectic composites by in situ spark plasma sintering. Ceram Int. 2016;42:19372–19385.
  • Demirskyi D, Solodkyi I, Nishimura T, et al. High-temperature strength and plastic deformation behaviour of niobium diboride consolidated by spark plasma sintering. J Am Ceram Soc. 2017;100:5295–5305.
  • Anstis GR, Chantikul P, Lawn BR, et al. A critical evaluation of indentation techniques for measuring fracture toughness: i direct crack measurements. J Am Ceram Soc. 1981;64:533–538.
  • Samsonov GV. Plenum press handbooks of high-temperature materials no:2 properties index. 1st ed. New York: Springer; 1964.
  • Borges LA, Coelho GC, Nunes CA, et al. New data on phase equilibria in the Nb-rich region of the Nb-B system. J Phase Equilibria. 2005;24:140–146.
  • Yeh CL, Chen WH. Preparation of niobium borides NbB and NbB2 by self-propagating combustion synthesis. J Alloy Compd. 2006;420:111–116.
  • Basu B, Raju GB, Suri AK. Processing and properties of monolithic TiB2 based materials. Int Mater Rev. 2006;51:352–374.
  • Monteverde F. Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2. Appl Phys A Mater Sci Proc. 2006;82:329–337.
  • Kim HJ, Lee SM, Oh YS, et al. Unoxidized graphene/alumina nanocomposite: fracture-and wear-resistance effects of graphene on alumina matrix. Sci Rep. 2014;4. Article number: 5176: 1–10.
  • King DS, Fahrenholtz WG, Hilmas GE. Microstructural effects on the mechanical properties of SiC-15 vol% TiB2 particulate-reinforced ceramic composites. J Am Ceram Soc. 2013;96:577–583.
  • Kumashiro Y, edited by. Electric refractory materials. New York: Taylor & Francis; 2005.
  • Nieto A, Zhao JM, Han YH, et al. Microscale tribological behavior and in vitro biocompatibility of graphene nanoplatelet reinforced alumina. J Mech Behav Biomed Mater. 2016;61:122–134.
  • Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 2017;90:75–127.
  • Nieto A, Bisht A, Lahiri D, et al. Graphene reinforced metal and ceramic matrix composites: a review. Int Mater Rev. 2017;62:241–302.
  • Markandan K, Chin JK, Tan MTT. Recent progress in graphene based ceramic composites: a review. J Mater Res. 2017;32:84–106.
  • Yadhukulakrishnan GB, Karumuri S, Rahman A, et al. Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites. Ceram Int. 2013;39:6637–6646.
  • Talmy IG, Wuchina EJ, Zaykoslr JA, et al. Properties of ceramics in the NbB2-CrB2 system. Ceram Eng Sci Proc. 1996;3:128–135.
  • Mansurova AN, Gulyaeva RI, Chumarev VM. Kinetic analysis of the oxidation of Nb-Si eutectic alloy doped with boron. Inorganic Mater: Appl Res. 2017;8:318–326.
  • Cheng J, Yi S, Park JS. Simultaneous coating of Si and B on Nb-Si-B alloys by a halide activated pack cementation method and oxidation behaviors of the alloy with coatings at 1100°C. J Alloy Compd. 2015;644:975–981.
  • Nieto A, Kumar A, Lahiri D, et al. Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow. Carbon. 2014;67:398–408.
  • Zimmermann JW, Hilmas GE, Fahrenholtz WG. Thermophysical properties of ZrB2 and ZrB2-SiC ceramics. J Am Ceram Soc. 2008;91:1405–1411.
  • Loehman R, Corral E, Dumm HP, et al. Ultra high temperature ceramics for hypersonic vehicle applications. Albuquerque, NM: Sandia National Laboratories; 2006. p. SAND2006–2925.
  • Opeka MM, Talmy IG, Wuchina EJ, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc. 1999;19:2405–2414.
  • Lauwers B, Vleugels J, Malek O, et al. Electrical discharge machining of composites. In: Hocheng H, editor. Machining technology for composite materials: principles and practice. Philadelphia: Woodhead Publishing in Materials; 2012:186–191.
  • Kaur N, Mohan R, Gaur NK, et al. Cohesive and thermal properties of transition metal diborides. Physica B. 2009;404:1607–1610.
  • Harrington GJK, Hilmas GE. Thermal conductivity of ZrB2 and HfB2. In: Fahrenholtz WG, Wuchina EJ, Lee WE, et al., editors. Ultra-high temperature ceramics: materials for extreme environment applications. New Jersey: John Wiley & Sons, Inc; 2014:197–235.
  • Hu C, Sakka Y, Jang B, et al. Microstructure and properties of ZrB2-SiC and HfB2-SiC composites fabricated by spark plasma sintering (SPS) using TaSi2 as sintering aid. J Ceram Soc Japan. 2010;118:997–1001.
  • Atif R, Iman F. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J Nanotechnol. 2016;7:1174–1196.
  • Liu J, Yan H, Jiang K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram Int. 2013;39:6215–6221.
  • Hu Z, Tong G, Lin D, et al. Graphene-reinforced metal matrix nanocomposites - a review. Mater Sci Technol. 2016;32:930–953.