864
Views
2
CrossRef citations to date
0
Altmetric
Full Length Articles

Oriented siloxane-containing vaterite/poly(lactic acid) composite scaffolds for controlling osteoblast alignment and proliferation

ORCID Icon, , &
Pages 228-237 | Received 05 Feb 2019, Accepted 18 Mar 2019, Published online: 04 Apr 2019

References

  • Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28:271–298.
  • Nakano T. Bone tissue and biomaterial design based on the anisotropic microstructure. In: Niinomi M, Narushima T, Nakai M, editors. Advances in metallic biomaterials: tissues, materials and biological reactions. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 3–30.
  • Seto J, Gupta HS, Zaslansky P, et al. Tough lessons from bone: extreme mechanical anisotropy at the mesoscale. Adv Funct Mater. 2008;18:1905–1911.
  • Nakano T, Kaibara K, Tabata Y, et al. Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam x-ray diffractometer system. Bone. 2002;31:479–487.
  • Ishimoto T, Nakano T, Umakoshi Y, et al. Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. J Bone Miner Res. 2013;28:1170–1179.
  • Nakano T, Kaibara K, Ishimoto T, et al. Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering. Bone. 2012;51:741–747.
  • Matsugaki A, Isobe Y, Saku T, et al. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates. J Biomed Mater Res A. 2015;103:489–499.
  • Ozasa R, Matsugaki A, Isobe Y, et al. Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model. J Biomed Mater Res A. 2018;106:360–369.
  • Madhurakkat Perikamana SK, Lee J, Ahmad T, et al. Effects of immobilized BMP-2 and nanofiber morphology on in vitro osteogenic differentiation of hMSCs and in vivo collagen assembly of regenerated bone. ACS Appl Mater Interfaces. 2015;7:8798–8808.
  • Lee J-H, Lee YJ, Cho H-J, et al. Guidance of in vitro migration of human mesenchymal stem cells and in vivo guided bone regeneration using aligned electrospun fibers. Tissue Eng Part A. 2013;20:2031–2042.
  • Chen X, Fu X, Shi J-G, et al. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Nanomed Nanotechnol Biol Med. 2013;9:1283–1292.
  • Matsugaki A, Aramoto G, Ninomiya T, et al. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure. Biomaterials. 2015;37:134–143.
  • Obata A, Tokuda S, Kasuga T. Enhanced in vitro cell activity on silicon-doped vaterite/poly(lactic acid) composites. Acta Biomater. 2009;5:57–62.
  • Obata A, Hotta T, Wakita T, et al. Electrospun microfiber meshes of silicon-doped vaterite/poly(lactic acid) hybrid for guided bone regeneration. Acta Biomater. 2010;6:1248–1257.
  • Yamada S, Ota Y, Nakamura J, et al. Preparation of siloxane-containing vaterite doped with magnesium. J Ceram Soc Jpn. 2014;122:1010–1015.
  • Yamada S, Obata A, Maeda H, et al. Development of magnesium and siloxane-containing vaterite and its composite materials for bone regeneration. Front Bioeng Biotechnol. 2015;3:195.
  • Yamada S, Ota Y, Obata A, et al. Osteoblast-like cell responses to ion products released from magnesium- and silicate-containing calcium carbonates. Biomed Mater Eng. 2017;28:47–56.
  • Xynos ID, Edgar AJ, Buttery LDK, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276:461–465.
  • Xynos ID, Hukkanen JMV, Batten JJ, et al. Bioglass®45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering, Calcif. Tissue Int. 2000;67:321–329.
  • Maeno S, Niki Y, Matsumoto H, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847–4855.
  • Marie PJ. The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone. 2010;46:571–576.
  • Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–184.
  • Takeichi M, Okada TS. Roles of magnesium and calcium ions in cell-to-substrate adhesion. Exp Cell Res. 1972;74:51–60.
  • Wolf FI, Cittadini A. Magnesium in cell proliferation and differentiation. Front Biosci. 1999;4:D607–D617.
  • Kasuga T, Obata A, Maeda H, et al. Siloxane-poly(lactic acid)-vaterite composites with 3D cotton-like structure. J Mater Sci Mater Med. 2012;23:2349–2357.
  • Wang J, Zhou P, Obata A, et al. Preparation of cotton-wool-like poly(lactic acid)-based composites consisting of core-shell-type fibers. Materials. 2015;8:7979–7987.
  • Lee S, Matsugaki A, Kasuga T, et al. Development of bifunctional oriented bioactive glass/poly(lactic acid) composite scaffolds to control osteoblast alignment and proliferation. J Biomed Mater Res A. 2019;107:1031-1041.
  • Sun T, Norton D, McKean RJ, et al. Development of a 3D cell culture system for investigating cell interactions with electrospun fibers. Biotechnol Bioeng. 2007;97:1318–1328.
  • Kasuga T, Maeda H, Kato K, et al. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials. 2003;24:3247–3253.
  • Nakamura J, Poologasundarampillai G, Jones JR, et al. Tracking the formation of vaterite particles containing aminopropyl-functionalized silsesquioxane and their structure for bone regenerative medicine. J Mater Chem B. 2013;1:4446–4454.
  • Nakamura J, Kasuga T. Enhancement of crystalline plane orientation in silsesquioxane-containing vaterite particles towards tuning of calcium ion release. J Mater Chem B. 2014;2:1250–1254.
  • Matsugaki A, Fujiwara N, Nakano T. Continuous cyclic stretch induces osteoblast alignment and formation of anisotropic collagen fiber matrix. Acta Biomater. 2013;9:7227–7235.
  • Wong G, Cohn DV. Separation of parathyroid hormone and calcitonin-sensitive cells from non-responsive bone cells. Nature. 1974;252:713.
  • Umeno A, Kotani H, Iwasaka M, et al. Quantification of adherent cell orientation and morphology under strong magnetic fields. IEEE Trans Magn. 2001;37:2909–2911.
  • Obata A, Ozasa H, Kasuga T, et al. Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering. J Mater Sci Mater Med. 2013;24:1649–1658.
  • Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–2425.
  • Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.
  • Nakamura J, Kasuga T. Preparation of siloxane-containing vaterite particles with red-blood-cell-like morphologies and incorporation of calcium-salt polylactide for bone regenerative medicine. J Ceram Soc Jpn. 2013;121:792–796.
  • Nakamura J, Ota Y, Sakka Y, et al. Interphase coordination design in carbamate-siloxane/vaterite composite microparticles towards tuning ion-releasing properties. Adv Powder Technol. 2017;28:1349–1355.