806
Views
4
CrossRef citations to date
0
Altmetric
Full Length Articles

Heterocoagulation and SPS sintering of sulfonitric-treated CNT and 8YZ nanopowders

, , , , &
Pages 238-246 | Received 17 Dec 2018, Accepted 19 Mar 2019, Published online: 21 Apr 2019

References

  • Curtin WA, Sheldon BW. CNT-reinforced ceramics and metals. Mater Today. 2004;7:44–49.
  • Duszová A, Dusza J, Tomášek K, et al. Zirconia/carbon nanofiber composite. Scr Mater. 2008;58:520–523.
  • Mohapatra P, Rawat S, Mahato N, et al. Restriction of phase transformation in carbon nanotube-reinforced yttria-stabilized zirconia. Metall Mater Trans A. 2015;46:2965–2974.
  • Peigney A, Laurent C, Rousset A. Synthesis and characterization of alumina matrix nanocomposites containing carbon nanotubes. Key Eng Mater. 1997;132–136:743–746.
  • Rishabh A, Joshi MR, Balani K. Fractal model for estimating fracture toughness of carbon nanotube reinforced aluminum oxide. J Appl Phys. 2010;107:123532.
  • Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996;381:678–680.
  • Xia Z, Riester L, Curtin WA, et al. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Materialia. 2004;52:931–944.
  • Zhu Y-F, Shi L, Liang J, et al. Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics. Compos Part B Eng. 2008;39:1136–1141.
  • Cho J, Boccaccini AR, Shaffer MSP. Ceramic matrix composites containing carbon nanotubes. J Mater Sci. 2009;44:1934–1951.
  • Estili M, Kawasaki A, Sakamoto H, et al. The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in α-alumina ceramics for structural reinforcement. Acta Materialia. 2008;56:4070–4079.
  • Estili M, Sakka Y, Kawasaki A. Unprecedented simultaneous enhancement in strain tolerance, toughness and strength of Al2O3 ceramic by multiwall-type failure of a high loading of carbon nanotubes. Nanotechnology. 2013;24: 155702. (9pp).
  • Melk L, Roa Rovira JJ, García-Marro F, et al. Nanoindentation and fracture toughness of nanostructured zirconia/multi-walled carbon nanotube composites. Ceram Int. 2015;41:2453–2461.
  • Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A. Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc. 2012;32:3001–3020.
  • Matsuoka M, Tatami J, Wakihara T, et al. Improvement of strength of carbon nanotube-dispersed Si3N4 ceramics by bead milling and adding lower-temperature sintering aids. J Asian Ceram Soc. 2014;2:199–203.
  • Kasperski A, Weibel A, Estournès C, et al. Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites. Carbon. 2013;53:62–72.
  • Suárez G, Jang B-K, Aglietti EF, et al. Fabrication of dense ZrO2/CNT composites: influence of bead-milling treatment. Metall Mat Trans A. 2013;44:4374–4381.
  • Estili M, Kawasaki A. An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scr Mater. 2008;58:906–909.
  • Kumar PS, Smart DSR, Alexis SJ. Corrosion behaviour of aluminium metal matrix reinforced with multi-wall carbon nanotube. J Asian Ceram Soc. 2017;5:71–75.
  • Ghahfarokhi SS, Mamoory RS, Kalashami AG. Inverse precipitation synthesis of ZrO2 nanopowder and in-situ coating on MWCNTs. Ceram Int. 2018;44:13556–13564.
  • Estili M, Sakka Y. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Sci Technol Adv Mater. 2014;15:064902.
  • Inam F. Development of Ceramic – Carbon Nanotube (CNT) nanocomposites. London (UK): School of Engineering and Materials Science Queen Mary, University of London; 2009.
  • Zhou W, Sasaki S, Kawasaki A. Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon. 2014;78:121–129.
  • Zhang J, Zou H, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B. 2003;107:3712–3718.
  • Gómez S, Rendtorff NM, Aglietti EF, et al. Intensity of sulfonitric treatment on multiwall carbon nanotubes. Chem Phys Lett. 2017;689:135–141.
  • Gómez S, Rendtorff NM, Aglietti EF, et al. Surface modification of multiwall carbon nanotubes by sulfonitric treatment. Appl Surf Sci. 2016;379:264–269.
  • Tiwari D, Basu B, Biswas K. Simulation of thermal and electric field evolution during spark plasma sintering. Ceram Int. 2009;35:699–708.
  • Grasso S, Sakka Y, Maizza G. Electric current activated/assisted sintering (ECAS): A review of patents 1906-2008. Sci Technol Adv Mater. 2009;10:053001.
  • Bruni YL, Compositos del sistema ZrO2-CaO-Al2O3 obtenidos por reacción-sinterización de zirconia y cemento de alta alúmina [Tesis], Facultad de Ciencias Exactas; 2014.
  • Mahato N, Nisar A, Mohapatra P, et al. Effect of far-field stresses and residual stresses incorporation in predicting fracture toughness of carbon nanotube reinforced yttria stabilized zirconia. J Appl Phys. 2017;122:145104.
  • Lamnini S, Fogarassy Z, Horváth ZE, et al., The role of the attrition milling on the grain size and distribution of the carbon nanotubes in YSZ powders. Boletín de la Sociedad Española de Cerámica y Vidrio; 2018.
  • Gómez S, Suarez G, Rendtorff N, et al. Relation between mechanical and textural properties of dense materials of tetragonal and cubic zirconia. Sci Sintering. 2016;48:119–130.
  • Lamnini S, Károly Z, Bódis E, et al. Influence of structure on the hardness and the toughening mechanism of the sintered 8YSZ/MWCNTs composites. Ceram Int. 2019;45:5058–5065.
  • Rendtorff NM, Grasso S, Hu C, et al. Dense zircon (ZrSiO 4) ceramics by high energy ball milling and spark plasma sintering. Ceram Int. 2012;38:1793–1799.
  • Rendtorff NM, Grasso S, Hu C, et al. Zircon-zirconia (ZrSiO 4-ZrO 2) dense ceramic composites by spark plasma sintering. J Eur Ceram Soc. 2012;32:787–793.
  • Moreira Toja RJ, Rendtorff NM, Aglietti EF, et al. Influence of the porosity caused by incomplete sintering on the mechanical behaviour of lanthanum silicate oxyapatite. Ceram Int. 2018;44:14348–14354.
  • Lankford J. Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method. J Mater Sci Lett. 1982;1:493–495.
  • Živcová Z, Černý M, Pabst W, et al. Elastic properties of porous oxide ceramics prepared using starch as a pore-forming agent. J Eur Ceram Soc. 2009;29:2765–2771.
  • Cho S, Kikuchi K, Miyazaki T, et al. Epitaxial growth of chromium carbide nanostructures on multiwalled carbon nanotubes (MWCNTs) in MWCNT–copper composites. Acta Materialia . 2013;61:708–716.
  • Curtin W. Stress-strain response of brittle matrix composites. In: Book: Comprehensive Composite Materials. 2000. p.47–76.
  • Bocanegra-Bernal MH, Dominguez-Rios C, Echeberria J, et al. Spark plasma sintering of multi-, single/double- and single-walled carbon nanotube-reinforced alumina composites: is it justifiable the effort to reinforce them? Ceram Int. 2016;42:2054–2062.
  • Yamamoto G, Shirasu K, Hashida T, et al. Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon. 2011;49:3709–3716.
  • Duszová A, Dusza J, Tomášek K, et al. Microstructure and properties of carbon nanotube/zirconia composite. J Eur Ceram Soc. 2008;28:1023–1027.
  • Mazaheri M, Mari D, Schaller R, et al. Processing of yttria stabilized zirconia reinforced with multi-walled carbon nanotubes with attractive mechanical properties. J Eur Ceram Soc. 2011;31:2691–2698.
  • Dusza J, Blugan G, Morgiel J, et al. Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites. J Eur Ceram Soc. 2009;29:3177–3184.
  • Stawarczyk B, Özcan M, Hallmann L, et al. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Invest. 2013;17:269–274.
  • Inam F, Yan H, Peijs T, et al. The sintering and grain growth behaviour of ceramic–carbon nanotube nanocomposites. Compos Sci Technol. 2010;70:947–952.