1,625
Views
11
CrossRef citations to date
0
Altmetric
Full Length Articles

Synthesis and characterization of divalent ion conductors with NASICON-type structures

ORCID Icon, ORCID Icon & ORCID Icon
Pages 221-227 | Received 29 Jan 2019, Accepted 18 Mar 2019, Published online: 23 Apr 2019

References

  • Takada K. Progress and prospective of solid-state lithium batteries. Acta Mater. 2013;61:759–770.
  • Tatsumisago M, Nagao M, Hayashi A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J Asian Ceram Soc. 2013;1:17–25.
  • Teng S, Tan J, Tiwari A. Recent developments in garnet based solid state electrolytes for thin film batteries. Curr Opin Solid State Mater Sci. 2014;18:29–38.
  • Xu X, Yang T, Shui M, et al. The preparation and lithium mobility of zinc based NASICON-type solid electrolyte Li1+2x+2yAlxZnyTi2−x−ySixP3−xO12. Ceram Int. 2014;40:3819–3822.
  • Lee W, Tamura S, Imanaka N. New calcium ion conducting solid electrolyte with NASICON-type structure. Chem Lett. 2017;46:1486–1489.
  • Aubrey ML, Ameloot R, Wiers BM, et al. Metal–organic frameworks as solid magnesium electrolytes. Energy Environ Sci. 2014;7:667–671.
  • Shao Y, Rajput NN, Hu J, et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy. 2015;12:750–759.
  • Zhao-Karger Z, Zhao X, Wang D, et al. Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv Energy Mater. 2015;5:1401155.
  • Farrington GC, Dunn B. Divalent beta″-aluminas: high conductivity solid electrolytes for divalent cations. Solid State Ion. 1982;7:276–281.
  • Stricker DW, Carlson WG. Ionic conductivity of cubic solid solutions in the system CaO—Y2O3—zrO2. J Am Ceram Soc. 1964;47:122–127.
  • Dunn B, Ostrom RM, Seevers R, et al. Divalent cation conductivity in beta″ alumina. Solid State Ion. 1981;5:203–204.
  • Nomura K, Ikeda S, Ito K, et al. Framework structure, phase transition, and transport properties in MIIZr4(PO4)6 compounds (MII = Mg, Ca, Sr, Ba, Mn, Co, Ni, Zn, Cd, and Pb). Bull Chem Soc Jpn. 1992;65:3221–3227.
  • Ikeda S, Takahashi M, Ishikawa J, et al. Solid electrolytes with multivalent cation conduction. 1. Conducting species in Mg-Zr-PO4 system. Solid State Ionics. 1987;23:125–129.
  • Tamura S, Yamane M, Imanaka N. Trivalent gallium ion conduction in NASICON-type solid. J Asian Ceram Soc. 2016;4:390–393.
  • Imanaka N, Tamura S. Development of multivalent ion conducting solid electrolytes. Chem Soc Jpn. 2011;84:353–362.
  • Nunotani N, Tamura S, Imanaka N. Highly tetravalent hafnium ion conducting solids with a NASICON-type structure. Electrochemistry. 2012;80:743–745.
  • Nunotani N, Ohsaka T, Tamura S, et al. Tetravalent Sn4+ ion conductor based on NASICON-type phosphate. ECS Electrochem Lett. 2012;1:A66–A69.
  • Nunotani N, Sawada M, Tamura S, et al. Enhancement of Hf4+ ion conductivity in a NASICON-type solid. Bull Chem Soc Jpn. 2010;83:415–418.
  • Imanaka N, Itaya M, Adachi G. First identification of tetravalent Hf4+ ion-conducting solid. Mater Lett. 2002;53:1–5.
  • Lee W, Tamauchi S, Tamura S, et al. Divalent Ni2+ cation conduction in NASICON-type solid. Mater Lett. 2019;234:261–263.
  • Tamura S, Yamane M, Hoshino Y, et al. Highly conducting divalent Mg2+ cation solid electrolytes with well-ordered three-dimensional network structure. J Solid State Chem. 2016;235:7–11.
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A. 1976;32:751–767.
  • Kobayashi Y, Egawa T, Tamura S, et al. Trivalent Al3+ ion conduction in aluminum tungstate solid. Chem Mater. 1997;9:1649–1654.
  • Aono H, Imanaka N, Adachi G. High Li+ conducting ceramics. Acc Chem Res. 1994;27:265–270.
  • Tamura S, Imanaka N, Adachi G. Trivalent cation conduction in R1/3Zr2(PO4)3 (R: rare earths) with the NASICON-type structure. J Alloy Compd. 2001;323-324:540–544.
  • Imanaka N, Adachi G. Rare earth ion conduction in tungstate and phosphate solids. J Alloy Compd. 2002;344:137–140.