1,181
Views
7
CrossRef citations to date
0
Altmetric
Full Length Article

Synergistic influence of SiC and C3N4 reinforcements on the characteristics of ZrB2-based composites

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 53-62 | Received 26 Apr 2020, Accepted 03 Nov 2020, Published online: 20 Nov 2020

References

  • Ahmadi Z, Nayebi B, Shahedi Asl M, et al.. Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron- and nano-sized SiC particulates. Ceram Int. 2018;44:11431–11437.
  • Shahedifar V, Ghassemi Kakroudi M, Vafa NP. Characterization of TaC-based fibrous-monolithic ceramics made of fibers with different core/shell volume ratios and orientations. Materials Science and Engineering: A. 2020;775:138935.
  • Shahedifar V, Kakroudi MG, Baharvandi HR, et al.. Investigation of strength, fracture toughness, and crack propagation pattern of TaC-based fibrous monoliths as a function of microstructure architecture. Int J Refract Met Hard Mater. 2019;78:332–339.
  • Shahedifar V, Kakroudi MG. Fracture behavior improvement of TaC-based ceramic composites by fibrous structure. Int J Refract Met Hard Mater. 2018;71:15–20.
  • Rezaei F, Kakroudi MG, Shahedifar V, et al.. Consolidation and mechanical properties of hot pressed TaC-HfC-VC composites, Ceram. Int. 2017;43:15537–15543.
  • Song S, Xie C, Li R, et al.. Atomic-scale investigation on the growth behavior of rod shape ZrB2. Ceram Int. 2019;45:23849–23852.
  • Nayebi B, Shahedi Asl M, Ghassemi Kakroudi M, et al.. Temperature dependence of microstructure evolution during hot pressing of ZrB2–30 vol.% SiC composites. Int J Refract Met Hard Mater. 2016;54:7–13.
  • Vaziri P, Balak Z. Improved mechanical properties of ZrB2-30 vol% SiC using zirconium carbide additive. Int J Refract Met Hard Mater. 2019;83:104958.
  • Kavakeb K, Balak Z, Kafashan H. Densification and flexural strength of ZrB2–30 vol% SiC with different amount of HfB2. Int J Refract Met Hard Mater. 2019;83:104971.
  • Fahrenholtz WG. Thermodynamic Analysis of ZrB 2 ?SiC Oxidation: formation of a SiC-Depleted Region. J Am Ceram Soc. 2007;90:143–148.
  • Balak Z, Zakeri M. Effect of HfB2 on microstructure and mechanical properties of ZrB2–SiC-based composites. Int J Refract Met Hard Mater. 2016;54:127–137.
  • Akhlaghi N, Balak Z, Najafi Birgani E. Milling time and sintering parameters optimization to fabricate ZrB2-30 vol% SiC composite with highest thermal shock resistance. Mater Res Express. 2019;6:055606.
  • Rezapour A, Balak Z. Fracture toughness and hardness investigation in ZrB2–SiC–ZrC composite. Mater Chem Phys. 2020;241:122284.
  • Han W, Li G, Zhang X, et al.. Effect of AlN as sintering aid on hot-pressed ZrB2–SiC ceramic composite. J Alloys Compd. 2009;471:488–491.
  • Mallik M, Roy S, Ray KK, et al.. Effect of SiC content, additives and process parameters on densification and structure–property relations of pressureless sintered ZrB2–SiC composites. Ceram Int. 2013;39:2915–2932.
  • Guo S-Q. Densification of ZrB2-based composites and their mechanical and physical properties: a review. J Eur Ceram Soc. 2009;29:995–1011.
  • Zhu S, Fahrenholtz WG, Hilmas GE. Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. J Eur Ceram Soc. 2007;27:2077–2083.
  • Monteverde F. Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2. Appl Phys A. 2006;82:329–337.
  • Guo S-Q, Nishimura T, Kagawa Y, et al.. Spark Plasma Sintering of Zirconium Diborides. J Am Ceram Soc. 2008;91:2848–2855.
  • Akbari E, Ghassemi Kakroudi M, Shahedifar V, et al.. The influence of different SiC amounts on the microstructure, densification and mechanical properties of hot‐pressed Al 2 O 3 –SiC composites. Int J Appl Ceram Technol. 2019;ijac.13406. DOI:10.1111/ijac.13406
  • Huang T, Hilmas GE, Fahrenholtz WG, et al.. Dispersion of zirconium diboride in an aqueous, high-solids paste. Int J Appl Ceram Technol. 2007;4:470–479.
  • Wang X-G, Guo W-M, Zhang G-J. Pressureless sintering mechanism and microstructure of ZrB2–SiC ceramics doped with boron. Scr Mater. 2009;61:177–180.
  • Wu -W-W, Zhang G-J, Kan Y-M, et al.. Reactive Hot Pressing of ZrB2-SiC-ZrC Composites at 1600°C. J Am Ceram Soc. 2008;91:2501–2508.
  • Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall. 2002;45:322–328.
  • ZOU J, ZHANG G, KAN Y, et al.. Pressureless densification of ZrB2–SiC composites with vanadium carbide. Scr Mater. 2008;59:309–312.
  • Shahedi Asl M, Nayebi B, Ahmadi Z, et al.. Effects of carbon additives on the properties of ZrB2–based composites: A review. Ceram Int. 2018;44:7334–7348.
  • Monteverde F, Bellosi A. Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates. Solid State Sci. 2005;7:622–630.
  • Monteverde F. The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures, Corros. Sci. 2005;47:2020–2033.
  • Wu H, Zhang W. Fabrication and properties of ZrB2–SiC–BN machinable ceramics. J Eur Ceram Soc. 2010;30:1035–1042.
  • Li G, Han W, Wang B. Effect of BN grain size on microstructure and mechanical properties of the ZrB2–SiC–BN composites. Mater Des. 2011;32:401–405.
  • Ma H-B, Man Z-Y, Liu J-X, et al.. Microstructures, solid solution formation and high-temperature mechanical properties of ZrB2 ceramics doped with 5vol.% WC. Mater Des. 2015;81:133–140.
  • Monteverde F, Bellosi A. Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride. Scr Mater. 2002;46:223–228.
  • Nayebi B, Shahedi Asl M, Ghassemi Kakroudi M, et al.. Interfacial phenomena and formation of nano-particles in porous ZrB2–40 vol% B4C UHTC. Ceram Int. 2016;42:17009–17015.
  • Mishra SK, Das SK, Ray AK, et al.. Effect of Fe and Cr addition on the sintering behavior of ZrB2 produced by self-propagating high-temperature synthesis. J Am Ceram Soc. 2004;85:2846–2848.
  • Meléndez-Martı́nez J, Domı́nguez-Rodrı́guez A, Monteverde F, et al.. Characterisation and high temperature mechanical properties of zirconium boride-based materials. J Eur Ceram Soc. 2002;22:2543–2549.
  • Wang H, Chen D, Wang C-A, et al.. Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process. Int J Refract Met Hard Mater. 2009;27:1024–1026.
  • Shahedi Asl M, Nayebi B, Ahmadi Z, et al.. A novel ZrB2–VB2–ZrC composite fabricated by reactive spark plasma sintering. Mater Sci Eng A. 2018;731:131–139.
  • Sun X, Han W, Liu Q, et al.. ZrB2-ceramic toughened by refractory metal Nb prepared by hot-pressing. Mater Des. 2010;31:4427–4431.
  • Sciti D, Silvestroni L, Celotti G, et al.. Sintering and mechanical properties of ZrB2-TaSi2 and HfB2-TaSi2 ceramic composites. J Am Ceram Soc. 2008;91:3285–3291.
  • Guo S-Q, Kagawa Y, Nishimura T, et al.. Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scr Mater. 2008;58:579–582.
  • Sciti D, Guicciardi S, Bellosi A, et al.. Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite. J Am Ceram Soc. 2006;060427083300081–???. DOI:10.1111/j.1551-2916.2006.00999.x
  • Shayesteh F, Delbari SA, Ahmadi Z, et al.. Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma. Ceram Int. 2019;45:5306–5311.
  • Ahmadi Z, Nayebi B, Shahedi Asl M, et al.. Sintering behavior of ZrB2–SiC composites doped with Si3N4: a fractographical approach. Ceram Int. 2017;43:9699–9708.
  • Habibi-Yangjeh A, Mousavi M, Nakata K. Boosting visible-light photocatalytic performance of g-C3N4/Fe3O4 anchored with CoMoO4 nanoparticles: novel magnetically recoverable photocatalysts. J Photochem Photobiol A Chem. 2019;368:120–136.
  • Cao S, Low J, Yu J, et al.. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater. 2015;27:2150–2176.
  • Orooji Y, Haddad Irani-nezhad M, Hassandoost R, et al.. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;234:118272.
  • Ghasemi M, Khataee A, Gholami P, et al.. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J Environ Manage. 2020;267:110629.
  • Dong G, Zhang Y, Pan Q, et al.. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photochem Photobiol C Photochem Rev. 2014;20:33–50.
  • Mousavi M, Habibi-Yangjeh A. Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven photocatalysts based on graphitic carbon nitride. J Colloid Interface Sci. 2016;465:83–92.
  • Karimi-Maleh H, Kumar BG, Rajendran S, et al.. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq. 2020;314:113588.
  • Karimi-Maleh H, Karimi F, Orooji Y, et al.. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci Rep. 2020;10:11699.
  • Won Jang H, Zareidoost A, Moradi M, et al.. Photosensitive nanocomposites: environmental and biological applications. J Compos Compd. 2020;2:50–60.
  • Mousavi M, Habibi-Yangjeh A, Seifzadeh D, et al.. Exceptional photocatalytic activity for g-C3N4 activated by H2O2 and integrated with Bi2S3 and Fe3O4 nanoparticles for removal of organic and inorganic pollutants. Adv Powder Technol. 2018. DOI:10.1016/j.apt.2018.12.003
  • Mousavi M, Habibi-Yangjeh A. Ternary g-C3N4/Fe3O4/Ag3VO4 nanocomposites: novel magnetically separable visible-light-driven photocatalysts for efficiently degradation of dye pollutants. Mater Chem Phys. 2015;163:421–430.
  • Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Shahedi Asl M, et al.. Synthesis of novel ternary g-C3N4/SiC/C-Dots photocatalysts and their visible-light-induced activities in removal of various contaminants. J Photochem Photobiol A Chem. 2020;392:112431.
  • Ahmadi Z, Zakeri M, Habibi-Yangjeh A, et al.. A novel ZrB2–C3N4 composite with improved mechanical properties. Ceram Int. 2019;45:21512–21519.
  • Anstis GR, Ccantikul P, Lawn BR, et al.. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc. 1981;64:533–538.
  • NIELSEN LF. Elasticity and damping of porous materials and impregnated materials. J Am Ceram Soc. 1984;67:93–98.
  • Yadhukulakrishnan GB, Rahman A, Karumuri S, et al.. Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite. Mater Sci Eng A. 2012;552:125–133.
  • Shahedi Asl M, Ghassemi Kakroudi M, Noori S. Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure. J Alloys Compd. 2015;619:481–487.
  • Shahedi Asl M, Ghassemi Kakroudi M. Characterization of hot-pressed graphene reinforced ZrB2–SiC composite. Mater Sci Eng A. 2015;625:385–392.
  • Manyali GS, Ab-initio study of elastic and structural properties of layered nitride materials, University of the Witwatersrand, 2012.
  • Huifang Z, Hanhu L. Research on the enhancement mechanism of g-C3N4 doped and its photocatalytic degradation of electroplating wastewater. Rev La Fac Ing. 2017;32:582–588.
  • Li H, Zhang L, Zeng Q, et al.. Crystal structure and elastic properties of ZrB compared with ZrB2: A first-principles study. Comput Mater Sci. 2010;49:814–819.
  • Reeber RR, Wang K. Lattice parameters and thermal expansion of important semiconductors and their substrates. MRS Proc. 2000;622:T6.35.1.
  • Méçabih S, Amrane N, Nabi Z, et al.. Description of structural and electronic properties of TiC and ZrC by generalized gradient approximation. Phys A Stat Mech Its Appl. 2000;285:392–396.
  • Liu L, Feng YP, Shen ZX. Structural and electronic properties of h-BN. Phys Rev B. 2003;68:104102.
  • Monteverde F, Guicciardi S, Bellosi A. Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater Sci Eng A. 2003;346:310–319.
  • Shahedi Asl M, Farahbakhsh I, Nayebi B. Characteristics of multi-walled carbon nanotube toughened ZrB2–SiC ceramic composite prepared by hot pressing. Ceram Int. 2016;42:19501958. DOI:10.1016/j.ceramint.2015.09.165
  • Karimi‐Maleh H, Karimi F, Alizadeh M, et al.. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem Rec. 2019;tcr.201900092. DOI:10.1002/tcr.201900092
  • Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos Part B Eng. 2019;172:666–670.
  • Karimi-Maleh H, Sheikhshoaie M, Sheikhshoaie I, et al.. A novel electrochemical epinine sensor using amplified CuO nanoparticles and a n -hexyl-3-methylimidazolium hexafluorophosphate electrode. New J Chem. 2019;43:2362–2367.
  • Cutler RA. Engineering properties of borides. In: S. J. S. Jr editor. Ceramics and glasses, engineered materials handbook. Vol. 4. Materials Park, OH: ASM International;1991.
  • Zhang P, Hu P, Zhang X, et al.. Processing and characterization of ZrB2–SiCW ultra-high temperature ceramics. J Alloys Compd. 2009;472:358–362.
  • Fahrenholtz WG, Hilmas GE, Talmy IG, et al.. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007;90:1347–1364.
  • Rezaie A, Fahrenholtz WG, Hilmas GE. Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC. J Mater Sci. 2007;42:2735–2744.