1,887
Views
5
CrossRef citations to date
0
Altmetric
Full Length Article

Solid state crystal growth of single crystals of 0.75(Na1/2Bi1/2)TiO3-0.25SrTiO3 and their characteristic electrical properties

, , , ORCID Icon, ORCID Icon, & show all
Pages 63-74 | Received 05 Jun 2020, Accepted 03 Nov 2020, Published online: 18 Nov 2020

References

  • Moulson AJ, Herbert JM. Electroceramics: materials, properties, applications. 2nd ed. Chichester: John Wiley & Sons; 2005. Chapter 5, dielectrics and insulators; p. 243–337.
  • Rödel J, Jo W, Seifert KTP, et al. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc. 2009;92(6):1153–1177.
  • Acosta M, Jo W, Rödel J. Temperature- and frequency-dependent properties of the 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 lead-free incipient piezoceramic. J Am Ceram Soc. 2014;97(6):1937–1943.
  • Müller-Fiedler R, Knoblauch V. Reliability aspects of microsensors and micromechatronic actuators for automotive applications. Microelectron Reliab. 2003;43(7):1085–1097.
  • Senousy MS, Rajapakse RKND, Mumford D, et al. Self-heat generation in piezoelectric stack actuators used in fuel injectors. Smart Mater Struct. 2009;18(4):045008.
  • Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature. 2004;432:84–87.
  • Jo W, Dittmer R, Acosta M, et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective. J Electroceram. 2012;29(1):71–93.
  • Zhang D, Yao Y, Fang M, et al. Isothermal phase transition and the transition temperature limitation in the lead-free (1-x)Bi0.5Na0.5TiO3-xBaTiO3 system. Acta Mater. 2016;103:746–753.
  • Rödel J, Webber KG, Dittmer R, et al. Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc. 2015;35(6):1659–1681.
  • Zang J, Li M, Sinclair DC, et al. Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3. J Am Ceram Soc. 2014;97(5):1523–1529.
  • Hiruma Y, Imai Y, Watanabe Y, et al. Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl Phys Lett. 2008;92(26):262904.
  • Guo Y, Liu Y, Withers RL, et al. Large electric field-induced strain and antiferroelectric behavior in (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 ceramics. Chem Mater. 2011;23(2):219–228.
  • Le PG, Jo GY, Ko SY, et al. The effect of sintering temperature and time on the growth of single crystals of 0.75 (Na0.5Bi0.5)TiO3–0.25 SrTiO3 by solid state crystal growth. J Electroceram. 2018;40(2):122–137.
  • Farooq MU, Fisher JG. Growth of (Na0.5K0.5)NbO3–SrTiO3 lead-free piezoelectric single crystals by the solid state crystal growth method and their characterization. Ceram Int. 2014;40(2):3199–3207.
  • Sun H, Fisher JG, Moon SH, et al. Solid-state-growth of lead-free piezoelectric (Na1/2Bi1/2)TiO3-CaTiO3 single crystals and their characterization. Mater Sci Eng B. 2017;223:109–119.
  • Wang K, Malič B, Wu J. Shifting the phase boundary: potassium sodium niobate derivates. MRS Bull. 2018;43(8):607–611.
  • Malič B, Koruza J, Hreščak J, et al. Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials. 2015;8(12):5449.
  • Villafuerte-Castrejón M, Morán E, Reyes-Montero A, et al. Towards lead-free piezoceramics: facing a synthesis challenge. Materials. 2016;9(1):21.
  • Zheng T, Wu J, Xiao D, et al. Composition-driven phase boundary and piezoelectricity in potassium–sodium niobate-based ceramics. ACS Appl Mater Interfaces. 2015;7(36):20332–20341.
  • Tian H, Hu C, Meng X, et al. Top-seeded solution growth and properties of K1–xNaxNbO3 crystals. Cryst Growth Des. 2015;15(3):1180–1185.
  • Liu Y, Xu G, Liu J, et al. Dielectric, piezoelectric properties of MnO2-doped (K0.5Na0.5)NbO3–0.05LiNbO3 crystal grown by flux-Bridgman method. J Alloys Compd. 2014;603:95–99.
  • Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. London: Academic Press; 1971.
  • Jones GO, Thomas PA. The tetragonal phase of Na0.5Bi0.5TiO3 – a new variant of the perovskite structure. Acta Crystallogr, Sect B. 2000;56(3):426–430.
  • Jones GO, Thomas PA. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogra, Sect B. 2002;58(2):168–178.
  • Reichmann K, Feteira A, Li M. Bismuth sodium titanate based materials for piezoelectric actuators. Materials. 2015;812:5469.
  • Pronin IP, Syrnikov PP, Isupov VA, et al. Peculiarities of phase transitions in sodium-bismuth titanate. Ferroelectrics. 1980;25(1):395–397.
  • Zvirgzds JA, Kapostin PP, Zvirgzde JV, et al. X-ray study of phase transitions in ferroelectric Na0.5Bi0.5TiO3. Ferroelectrics. 1982;40(1):75–77.
  • Park SE, Chung SJ, Kim IT, et al. Nonstoichiometry and the long-range cation ordering in crystals of (Na1/2Bi1/2)TiO3. J Am Ceram Soc. 1994;77(10):2641–2647.
  • Rout D, Moon KS, Kang SJL, et al. Dielectric and Raman scattering studies of phase transitions in the (100−x)Na0.5Bi0.5TiO3–xSrTiO3 system. J Appl Phys. 2010;108(8):084102.
  • Krauss W, Schütz D, Mautner FA, et al. Piezoelectric properties and phase transition temperatures of the solid solution of (1-x)(Bi0.5Na0.5)TiO3–xSrTiO3. J Eur Ceram Soc. 2010;30(8):1827–1832.
  • Watanabe Y, Hiruma Y, Nagata H, et al. Phase transition temperatures and electrical properties of divalent ions (Ca2+, Sr2+ and Ba2+) substituted (Bi1/2Na1/2)TiO3 ceramics. Ceram Int. 2008;34(4):761–764.
  • Sayyed S, Acharya SA, Kautkar P, et al. Structural and dielectric anomalies near the MPB region of Na0.5Bi0.5TiO3–SrTiO3 solid solution. RSC Adv. 2015;5(63):50644–50654.
  • Moon KS, Rout D, Lee HY, et al. Solid state growth of Na1/2Bi1/2TiO3–BaTiO3 single crystals and their enhanced piezoelectric properties. J Cryst Growth. 2011;317(1):28–31.
  • Zhang Q, Zhao X, Sun R, et al. Crystal growth and electric properties of lead-free NBT-BT at compositions near the morphotropic phase boundary. Phys Status Solidi A. 2011;208(5):1012–1020.
  • Chiang Y, Farrey G, Soukhojak A. Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family. Appl Phys Lett. 1998;73(25):3683–3685.
  • Sun R, Zhang Q, Fang B, et al. Dielectric, electromechanical coupling properties of Mn-doped Na0.5Bi0.5TiO3–BaTiO3 lead-free single crystal. Appl Phy A. 2011;103:199–205.
  • Sheets S, Soukhojak A, Ohashi N, et al. Relaxor single crystals in the (Bi1/2Na1/2)1-xBaxZryTi1-yO3 system exhibiting high electrostrictive strain. J Appl Phys. 2001;90(10):5287–5295.
  • Park JH, Kang SJL. Solid-state conversion of (94-x)(Na1/2Bi1/2)TiO3-6BaTiO3-x(K1/2Na1/2)NbO3 single crystals and their enhanced converse piezoelectric properties. AIP Adv. 2016;6(1):015310.
  • Chen C, Zhao X, Wang Y, et al. Giant strain and electric-field-induced phase transition in lead-free (Na0.5Bi0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3 single crystal. Appl Phys Lett. 2016;108(2):022903.
  • Benčan A, Tchernychova E, Uršič H, et al. Growth and characterization of single crystals of potassium sodium niobate by solid state crystal growth. In: Lallart M editor. Ferroelectrics-material aspects. Rijeka: InTech; 2011. p. 87–108.
  • Kang SJL, Park JH, Ko SY, et al. Solid-state conversion of single crystals: the principle and the state-of-the-art. J Am Ceram Soc. 2015;98(2):347–360.
  • Lee D-K, Vu H, Fisher JG. Growth of (Na0.5Bi0.5)TiO3-Ba(Ti1-xZrx)O3 single crystals by solid state single crystal growth. J Electroceram. 2015;34(2–3):150–157.
  • Lee D, Vu H, Sun H, et al. Growth of (Na0.5Bi0.5)TiO3-SrTiO3 single crystals by solid state crystal growth. Ceram Int. 2016;42(16):18894–18901.
  • Park JH, Lee HY, Kang SJL. Solid-state conversion of (Na1/2Bi1/2)TiO3-BaTiO3-(K1/2Na1/2)NbO3 single crystals and their piezoelectric properties. Appl Phys Lett. 2014;104(22):222910.
  • Le PG, Fisher JG, Moon W-J. Effect of composition on the growth of single crystals of (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 by solid state crystal growth. Materials. 2019;1215:2357.
  • Wojdyr M. Fityk: a general-purpose peak fitting program. J Appl Crystallogr. 2010;43(5):1126–1128.
  • Ko SY, Park JH, Kim IW, et al. Improved solid-state conversion and piezoelectric properties of 90Na1/2Bi1/2TiO3-5BaTiO3-5K1/2Na1/2NbO3 single crystals. J Eur Ceram Soc. 2017;37(1):407–411.
  • Bradley MS. Lineshapes in IR and raman spectroscopy: a primer. Spectroscopy. 2015;30(11):42–46.
  • Farooq MU, Fisher JG, Kim JH, et al. Reactive sintering of lead-free piezoelectric (K0.5Na0.5)NbO3 ceramics. J Ceram Process Res. 2016;17(4):304–312.
  • Fisher JG, Jang SH, Park MS, et al. The effect of niobium doping on the electrical properties of 0.4(Bi0.5K0.5)TiO3-0.6BiFeO3 lead-free piezoelectric ceramics. Materials. 2015;12:8183–8194.
  • Fisher JG, Park HY, Song YO, et al. Sintering, microstructure and electrical properties of 0.4(Bi0.5K0.5)TiO3-0.6BiFeO3 lead-free piezoelectric ceramics. J Korean Phys Soc. 2016;68(1):59–67.
  • Li M, Pietrowski MJ, De Souza RA, et al. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater. 2014;13(1):31–35.
  • Li L, Li M, Zhang H, et al. Controlling mixed conductivity in Na1/2Bi1/2TiO3 using A-site non-stoichiometry and Nb-donor doping. J Mater Chem C. 2016;4(24):5779–5786.
  • Kong S, Kumar N, Checchia S, et al. Defect-driven structural distortions at the surface of relaxor ferroelectrics. Adv Funct Mater. 2019;29(27):1900344.
  • Fisher JG, Sun H, Kook YG, et al. Growth of single crystals of BaFe12O19 by solid state crystal growth. J Magn Magn Mater. 2016;416:384–390.
  • Kang SJL, Lee MG, An SM. Microstructural evolution during sintering with control of the interface structure. J Am Ceram Soc. 2009;92(7):1464–1471.
  • Moon KS, Rout D, Lee HY, et al. Effect of TiO2 addition on grain shape and grain coarsening behavior in 95Na1/2Bi1/2TiO3–5BaTiO3. J Eur Ceram Soc. 2011;31(10):1915–1920.
  • Moon KS, Kang SJL. Coarsening behavior of round-edged cubic grains in the Na1/2Bi1/2TiO3-BaTiO3 system. J Am Ceram Soc. 2008;91(10):3191–3196.
  • Choi SY, Kang SJL. Sintering kinetics by structural transition at grain boundaries in barium titanate. Acta Mater. 2004;52(10):2937–2943.
  • Jung YI, Yoon DY, Kang SJL. Coarsening of polyhedral grains in a liquid matrix. J Mater Res. 2009;24(9):2949–2959.
  • Sung YS, Kim JM, Cho JH, et al. Effects of Bi nonstoichiometry in (Bi0.5+xNa) TiO3 ceramics. Appl Phys Lett. 2011;98(1):012902.
  • Liu X, Xue S, Ma J, et al. Electric-field-induced local distortion and large electrostrictive effects in lead-free NBT-based relaxor ferroelectrics. J Eur Ceram Soc. 2018;38(14):4631–4639.
  • Rout D, Moon KS, Park J, et al. High-temperature X-ray diffraction and Raman scattering studies of Ba-doped (Na0.5Bi0.5)TiO3 Pb-free piezoceramics. Curr Appl Phys. 2013;13(9):1988–1994.
  • Wang J, Zhou Z, Xue J. Phase transition, ferroelectric behaviors and domain structures of (Na1/2Bi1/2)1−xTiPbxO3 thin films. Acta Mater. 2006;54(6):1691–1698.
  • Rout D, Moon KS, Rao VS, et al. Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3-BaTiO3 system by Raman spectroscopy. J Ceram Soc Jpn. 2009;117(1367):797–800.
  • Wylie-van Eerd B, Damjanovic D, Klein N, et al. Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys Rev B. 2010;82(10):104112.
  • Garg R, Rao BN, Senyshyn A, et al. Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact. Phys Rev B. 2013;88(1):014103.
  • Luo L, Ge W, Li J, et al. Raman spectroscopic study of Na1/2Bi1/2TiO3-x%BaTiO3 single crystals as a function of temperature and composition. J Appl Phys. 2011;109(11):113507.
  • Tong X-Y, Zhou -J-J, Wang K, et al. Low-temperature sintered Bi0.5Na0.5TiO3-SrTiO3 incipient piezoceramics and the co-fired multilayer piezoactuator thereof. J Eur Ceram Soc. 2017;37(15):4617–4623.
  • Wang Y, Luo C, Wang S, et al. Large piezoelectricity in ternary lead‐free single crystals. Adv Electron Mater. 2020;6(1):1900949.
  • Hinterstein M, Knapp M, Hölzel M, et al. Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics. J Appl Crystallogr. 2010;43(6):1314–1321.
  • Paterson AR, Nagata H, Tan X, et al. Relaxor-ferroelectric transitions: sodium bismuth titanate derivatives. MRS Bull. 2018;43(8):600–606.
  • Weyland F, Acosta M, Koruza J, et al. Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv Funct Mater. 2016;26(40):7326–7333.
  • Craciun F, Galassi C, Birjega R. Electric-field-induced and spontaneous relaxor-ferroelectric phase transitions in (Na1/2Bi1/2)1 − xBaxTiO3. J Appl Phys. 2012;112(12):124106.
  • Jo W, Schaab S, Sapper E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J Appl Phys. 2011;110(7):074106.
  • Yao J, Ge W, Luo L, et al. Hierarchical domains in Na1/2Bi1/2TiO3 single crystals: ferroelectric phase transformations within the geometrical restrictions of a ferroelastic inheritance. Appl Phys Lett. 2010;96(22):222905.
  • Tu CS, Huang SH, Ku CS, et al. Phase coexistence and Mn-doping effect in lead-free ferroelectric (Na1/2Bi1/2)TiO3 crystals. Appl Phys Lett. 2010;96(6):1–3.
  • Cordero F, Craciun F, Trequattrini F, et al. Phase transitions and phase diagram of the ferroelectric perovskite (Na0.5Bi0.5)1-xBaxTiO3 by anelastic and dielectric measurements. Phys Rev B. 2010;81(14):144124.
  • Ge W, Luo C, Zhang Q, et al. Ultrahigh electromechanical response in (1−x)(Na0.5Bi0.5)TiO3-xBaTiO3 single-crystals via polarization extension. J Appl Phys. 2012;111(9):093508.
  • Lee H-Y, Wang K, Yao F-Z, et al. Identifying phase transition behavior in Bi1/2Na1/2TiO3-BaTiO3 single crystals by piezoresponse force microscopy. J Appl Phys. 2017;121(17):174103.
  • Sung YS, Kim JM, Cho JH, et al. Effects of Na nonstoichiometry in (Bi0.5Na0.5+x)TiO3 ceramics. Appl Phys Lett. 2010;96(2):022901.
  • Chen C, Jiang X, Li Y, et al. Growth and electrical properties of Na1/2Bi1/2TiO3–BaTiO3 lead-free single crystal with morphotropic phase boundary composition. J Appl Phys. 2010;108(12):124106.
  • Schneider D, Jo W, Rödel J, et al. Anisotropy of ferroelectric behavior of (1 − x)Bi1/2Na1/2TiO3–xBaTiO3 single crystals across the morphotropic phase boundary. J Appl Phys. 2014;116(4):044111.
  • Bousquet M, Duclère JR, Orhan E, et al. Optical properties of an epitaxial Na0.5Bi0.5TiO3 thin film grown by laser ablation: experimental approach and density functional theory calculations. J Appl Phys. 2010;107(10):104107.
  • He C, Deng C, Wang J, et al. Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3–BaTiO3 single crystals. Phys B Condens Matter. 2016;483:44–47.
  • Dorywalski K, Lemée N, Andriyevsky B, et al. Optical properties of epitaxial Na0.5Bi0.5TiO3 lead-free piezoelectric thin films: ellipsometric and theoretical studies. Appl Surf Sci. 2017;421:367–372.
  • Rani R, Sharma S, Rai R, et al. Investigation of dielectric and electrical properties of Mn doped sodium potassium niobate ceramic system using impedance spectroscopy. J Appl Phys. 2011;110(10):104102.
  • Wu J, Wang J, Xiao D, et al. Migration kinetics of oxygen vacancies in Mn-modified BiFeO3 thin films. ACS Appl Mater Interfaces. 2011;3(7):2504–2511.
  • Morozov MI, Einarsrud MA, Grande T. Atmosphere controlled conductivity and Maxwell-Wagner relaxation in Bi0.5K0.5TiO3-BiFeO3 ceramics. J Appl Phys. 2014;115(4):044104.
  • Kim JH, Shin EC, Cho DC, et al. Electrical characterization of polycrystalline sodium β″-alumina: revisited and resolved. Solid State Ion. 2014;264:22–35.
  • Lee JS, Superior A. Description of AC behavior in polycrystalline solid electrolytes with current-constriction effects. J Korean Ceram Soc. 2016;53(2):150–161.
  • Moon SH, Kim YH, Cho DC, et al. Sodium ion transport in polymorphic scandium NASICON analog Na3Sc2(PO4)3 with new dielectric spectroscopy approach for current-constriction effects. Solid State Ion. 2016;289:55–71.
  • Wang K, Hussain A, Jo W, et al. Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics. J Am Ceram Soc. 2012;95(7):2241–2247.
  • Jo W, Granzow T, Aulbach E, et al. Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys. 2009;105(9):094102.
  • Luo C, Ge W, Zhang Q, et al. Crystallographic direction dependence of direct current field induced strain and phase transitions in Na0.5Bi0.5TiO3-x%BaTiO3 single crystals near the morphotropic phase boundary. Appl Phys Lett. 2012;101(14):141912.
  • Ge W, Liu H, Zhao X, et al. Orientation dependence of electrical properties of 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 lead-free piezoelectric single crystal. Appl Phys A. 2009;95(3):761–767.
  • Chen C, Wang Y, Jiang X, et al. Orientation dependence of electric field induced phase transitions in lead-free (Na0.5Bi0.5)TiO3-based single crystals. J Am Ceram Soc. 2019;102(7):4306–4313.
  • Du X-H, Wang Q-M, Belegundu U, et al. Crystal orientation dependence of piezoelectric properties of single crystal barium titanate. Mater Lett. 1999;40(3):109–113.
  • Wada S, Seike A, Kakemoto H, et al. Piezoelectric properties of KNbO3 single crystals with various crystallographic orientations. Ferroelectrics. 2002;273:2717–2722.
  • Wada S, Seike A, Tsurumi T. Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals. Jpn J Appl Phys. 2001;40(Part 1, No. 9B):5690–5697.
  • Liu S-F, Park S-E, Shrout TR, et al. Electric field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn1/3Nb2/3)O3– 0.045PbTiO3 single crystals. J Appl Phys. 1999;85(5):2810–2814.
  • Zhang S, Li F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys. 2012;111(3):031301.
  • Lebon A, Dammak H, Calvarin G. Tetragonal and rhombohedral induced polar order from the relaxor state of PbZn1/3Nb2/3O3. J Phys: Condens Matter. 2003;15(19):3069–3078.
  • Bai F, Wang N, Li J, et al. X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1∕3Nb2∕3)-0.3PbTiO3 crystal. J Appl Phys. 2004;96(3):1620–1627.
  • Cao H, Li J-F, Viehland D. Electric-field-induced orthorhombic to monoclinic MB phase transition in [111] electric field cooled Pb(Mg1∕3Nb2∕3O3)–30%PbTiO3 crystals. J Appl Phys. 2006;100(8):084102.
  • Davis M, Budimir M, Damjanovic D, et al. Rotator and extender ferroelectrics: importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J Appl Phys. 2007;101(5):054112.