1,096
Views
1
CrossRef citations to date
0
Altmetric
Full Length Article

Microhardness and microstructural properties of a mixture of hydroxyapatite and β-tricalcium phosphate

, , & ORCID Icon
Pages 11-17 | Received 25 May 2022, Accepted 11 Oct 2022, Published online: 20 Oct 2022

References

  • Orlovskii VP, Komlev VS, Barinov SM. Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater. 2002;38(10):973–984.
  • Ogose A, Hotta T, Kawashima H, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res Part B. 2005;72(1):94–101.
  • Xu S, Liu J, Zhang L, et al. Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. J Mater Chem B. 2017;5(30):6110–6118.
  • Kim Y, Lee SW, Rho HT, et al. Hydration and microhardness of mineral trioxide aggregate depending on ratio between di- and tricalcium silicates. Inter J Appl Ceram Technol. 2021; 10.1111/ijac.13946
  • Yuan H, Blitterswijk CAV, Groot KD, et al. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res A. 2006;78(1):139–147.
  • Impens S, Schelstraete R, Luyten J, et al. Production and characterisation of porous calcium phosphate structures with controllable hydroxyapatite/ β -tricalcium phosphate ratios. Adv Appl Ceram. 2009;108(8):494–500.
  • Vani R, Girija EK, Elayaraja K, et al. Hydrothermal synthesis of porous triphasic hydroxyapatite/(a and b) tricalcium phosphate. J Mater Sci Mater Med. 2009;20:S43–S48.
  • Kohri M, Miki K, Waite DE, et al. In vitro stability of biphasic calcium phosphate ceramics. Biomaterials. 1993;14(4):299–304.
  • Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012;8(3):963–977.
  • Wu S, Hsu H, Hsu S, et al. Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering. Mater Charact. 2011;62(5):526–534.
  • Frayssinet P, Trouillet JL, Rouquet N, et al. Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition. Biomaterials. 1993;14(6):423–429.
  • Tanimoto Y, Shibata Y, Murakami A, et al. Effect of varying HAP/TCP ratios in tape-cast biphasic calcium phosphate ceramics on response in vitro. J Hard Tissue Biol. 2009;18(2):71–76
  • Webler GD, Zapata MJM, Agra LC, et al. Characterization and evaluation of cytotoxicity of biphasic calcium phosphate synthesized by a solid state reaction route. Curr Appl Phys. 2014;14(6):876–880.
  • Jongprateep O, Nueangjumnong C, Palomas J. Effect of solids loadings, sintering temperatures and sintering periods on microstructure of hydroxyapatite. Key Eng Mater. 2017;751:629–635.
  • Ramadas M, Mabrouk KE, Ballamurugan AM. Apatite derived three dimensional (3D) porous scaffolds for tissue engineering applications. Mater Chem Phys. 2020;24:122456.
  • Chandrasekar A, Sagadevan S, Dakshnamoorthy A. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int J Phys Sci. 2013;8:1639–1645.
  • Wang H, Lee J-K, Moursi A, et al. Ca/P ratio effects on the degradation of hydroxyapatitein vitro. J Biomed Mater Res A. 2003;67(2):599–608.
  • Khiri MZA, Matori KA, Zaid MHM, et al. Crystallization behavior of low-cost biphasic hydroxyapatite/β-tricalcium phosphate ceramic at high sintering temperatures derived from high potential calcium waste sources. Results Phys. 2019;12:638–644.
  • Yu A-B, Standish N, McLean A. Porosity Calculation of Binary Mixtures of Nonspherical Particles. J Am Ceram Soc. 1993;76(11):2813–2816.
  • El-Husseiny A. Unified Packing Model for Improved Prediction of Porosity and Hydraulic Conductivity of Binary Mixed Soils. Water. 2021;13(4):455.
  • El-Husseiny A, Vanorio T, Mavko G. Predicting porosity of binary mixtures made out of irregular nonspherical particles: application to natural sediments. Adv Powder Technol. 2019;30(8):1558–1566.
  • Niakana A, Ramesh S, Ganesan P, et al. Teng, Sintering behavior of natural porous hydroxyapatite derived from bovine bone. Ceram. 2015;41:3024–3029.
  • Hoepfner TP, Case ED. The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceram Int. 2003;29(6):699–706.
  • Pramanik S, Agarwal AK, Rai KN. Development of high strength hydroxyapatite for hard tissue replacement. Trends Biomater Artif Organs. 2005;19:45–49.
  • Cherry JA, Davies HM, Mehmood S, et al. Investigation into the Effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. J Adv Manuf Technol. 2015;76(5–8):869–879.
  • Luo J, Stevens R. Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics. Ceram Int. 1999;25(3):281–286.
  • Jang B-K, Matsubara H. Influence of porosity on hardness and Young’s modulus of nanoporous EB-PVD TBCs by nanoindentation. Mater Lett. 2005;59(27):3462–3466.
  • Shuai C, Li P, Liu J, et al. Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Mater Charact. 2013;77:23–31.
  • Rice RW. Mechanisms of toughening in ceramic matrix composites. Ceram Eng Sci Proc. 1981;2:661–701.
  • Raynaud S, Champion E, Lafon JP, et al. Calcium phosphate apatites with variable Ca/P atomic ratio III. Ceram Eng Sci Proc. 1981;2:661–701.