631
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Crystal growth of HAp on plate-like ZnO particles using APTES as surface treatment agents

, &
Pages 53-61 | Received 06 Oct 2022, Accepted 13 Nov 2022, Published online: 21 Nov 2022

References

  • Cornell CN, Lane JM. Current understanding of osteoconduction in bone regeneration. Clin Orthop Relat Res. 1998;355:267–273.
  • Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20(23–24):2287–2303.
  • Hench LL. Bioceramics: from Concept to Clinic. J. Am. Cream. Soc. 1991;74(7):1487–1510
  • Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cells Mater. 2006;11:43–56.
  • Galgut PN. Oxidized cellulose mesh II. Using hydroxy-apatite bone grafting material in the treatment of infrabony defects. Biomater. 1990;11(8):565–567.
  • Heise U, Osborn JF, Duwe F. Hydroxyapatite ceramic as a bone substitute. Int Orthop. 1990;14(3):329–338.
  • Zablotsky M. Hydroxyapatite coatings in implant dentistry. Implant Dent. 1992;1:253–257.
  • Habibovic P, Marrère F, Blitterswijk CAV, et al. Biomimetic Hydroxyapatite Coating on Metal Implants. J Am Chem Soc. 2004;85(3):517–522.
  • Shen JW, Wu T, Wang Q, et al. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Biomaterials. 2008;29(5):513–532.
  • Akazawa A, Kobayashi M, Kodaira K. A Newly Designed Adsorbent Prepared from Hydroxyapatite Originating from Cattle-Bones for Chromatographic Separation of Albumin and Lysozyme. Bull Chem Soc Jpn. 1997;70(9):2323–2329.
  • Zhang H, Zhou K, Li Z, et al. Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J Phys Chem Solids. 2009;70(1):243–248.
  • Bian T, Zhao K, Meng Q, et al. Synthesis of plate-like single-crystal hydroxyapatite rods with c-axis orientation by biotemplate small intestinal submucosa. Ceram Int. 2017;43(15):11807–11814.
  • D’Elía NL, Gravina AN, Ruso JM, et al. Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: effects on mineral coating morphology and growth kinetic. Biochim. Biophys. Acta. Gen. 2013;1830(11):5014–5026.
  • Zhao XY, Zhu YJ, Chen F, et al. Hydrothermal synthesis of hydroxyapatite nanorods and nanowires using riboflavin-5′-phosphate monosodium salt as a new phosphorus source and their application in proteinadsorption. Cryst Eng Comm. 2013;15(39):7926–7935.
  • Zhang Y, Lu J. A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature. J. Nanoparticle. Res. 2007;9(4):589–594
  • Oral ÇM, Çalışkan A, Kapusuz D, et al. Facile control of hydroxyapatite particle morphology by utilization of calcium carbonate templates at room temperature. Ceram Int. 2020;46(13):21319–21327.
  • Kawasaki T. Hydroxyapatite as a liquid chromatographic packing. J Chromatogr A. 1991;544:147–184.
  • Fernández A, Lassaletta G, Jiménez VM, et al. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catl. B. 1995;7(1–2):49–63.
  • Yu QL, Browers HJH. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: experimental study. Appl Catal B. 2009;92(3–4):454–461.
  • Zhao B, Wang Y, Yao X, et al. Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst. Nat Commun. 2021;12(1):1345.
  • Han X, Huang J, Jing X, et al. Oxygen-Deficient Black Titania for Synergistic/Enhanced Sonodynamic and Photoinduced Cancer Therapy at Near Infrared-II Biowindow. ACS Nano. 2018;12(5):4545–4555.
  • Tang J, Zou Z, Ye J. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. Ang. Chem. Int. Ed. 2004;43(34):4563–4566
  • Minabe T, Tryk DA, Sawunyama P, et al. TiO2-mediated photodegradation of liquid and solid organic compounds. J Photochem Photobiol A Chem. 2000;137(1):53–62.
  • Hirakura S, Kobayashi T, Ono S, et al. Fibrous nanocrystals of hydroxyapatite loaded with TiO2 nanoparticles for the capture and photocatalytic decomposition of specific proteins. Colloids Surf B. 2010;79(1):131–135.
  • Nakajima A, Rakakuwa K, Kameshima Y, et al. Preparation and properties of titania–apatite hybrid films. J Photochem Photobiol A Chem. 2006;177(1):94–99.
  • Hung J, Gong Y, Liu Y, et al. Developing titania-hydroxyapatite-reduced graphene oxide nanocomposite coatings by liquid flame spray deposition for photocatalytic applications. J. Eur. Cream. Soc. 2017;37(12):3705–3711.
  • Yusufoglu Y, Akinc M. Effect of pH on the Carbonate Incorporation into the Hydroxyapatite Prepared by an Oxidative Decomposition of Calcium–EDTA Chelate. J. Am. Cream. Soc. 2007;91(1):77–82
  • Xie R, Feng Z, Li S, et al. EDTA-Assisted Self-Assembly of Fluoride-Substituted Hydroxyapatite Coating on Enamel Substrate. Cryst Growth Des. 2011;11(12):5206–5214.
  • Kumar GS, Girjia EK, Venkatesh M, et al. One step method to synthesize flower-like hydroxyapatite architecture using mussel shell bio-waste as a calcium source. Ceram Int. 2017;43(3):3457–3461.
  • Soten I, Ozin GA. Porous hydroxyapatite-dodecylphosphate composite film on titania-titanium substrate. J. Mater. Chem. 1999;9(3):703–710
  • Forsgren J, Svahn F, Jarmar T, et al. Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates. Acta Biomater. 2007;3(6):980–984.
  • Jin B, Shao C, Wang Y, et al. Anisotropic Epitaxial Behavior in the Amorphous Phase-Mediated Hydroxyapatite Crystallization Process: a New Understanding of Orientation Control. J Phys Chem Lett. 2019;10(24):7611–7616.
  • Shibata H, Iizuka Y, Kawai T, et al. Preparation of Hexagonal Plate-like ZnO Single-crystal Particles in the Presence of Anionic Amphiphiles. J Oleo Sci. 2020;69(7):783–787.
  • Shibata H, Iizuka Y, Amano M, et al. Effect of Anionic Amphiphiles on the Morphology of Hexagonal Plate-like ZnO Particles. J Oleo Sci. 2021;70(7):919–925.
  • Amano M, Hashimoto K, Shibata H. Preparation and Photocatalytic Activity of Hexagonal Plate-like ZnO Particles Using Anionic Surfactants. J Oleo Sci. 2022;71(6):927–932.
  • Saad R, Hamoudi S, Belkacemi K. Adsorption of phosphate and nitrate anions on ammonium-functionnalized mesoporous silicas. J Porous Mater. 2008;15:315–323.
  • Saad R, Belkacemi K, Hamoudi S. Adsorption of phosphate and nitrate anions on ammonium-functionalized MCM-48: effects of experimental conditions. J Colloid Interface Sci. 2007;311(2):375–381.
  • Rahman IA, Jafarzadeh M, Sipaut CS. Synthesis of organo-functionalized nanosilica via a co-condensation modification using γ-aminopropyltriethoxysilane (APTES). Ceram Int. 2009;35(5):1883–1888.
  • Jaramillo AF, Curz RB, Montoya LF, et al. Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Cream. Int. 2017;43(15): 11838–11847
  • Murugan C, Murugan N, Sundramoorthy AK, et al. Gradient Triple-Layered ZnS/ZnO/Ta2O5–SiO2 Core–Shell Nanoparticles for Enzyme-Based Electrochemical Detection of Cancer Biomarkers. ACS Appl Nano Mater. 2020;3(8):8461–8471.
  • Bhanvase BA, Kutbuddin Y, Borse RN, et al. Ultrasound assisted synthesis of calcium zinc phosphate pigment and its application in nanocontainer for active anticorrosion coatings. Chem Eng J. 2013;231:345–354.
  • Krishnapriya T, Jose A, Jose TA, et al. An insight into the luminescent properties and Judd–Ofelt analysis of Eu3+ doped CaZn2(PO4)2 phosphors. J Mater Sci Mater Electron. 2020;31:22452–22466.
  • Abbona F, Baronnet A. A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium. J Cryst Growth. 1996;165(1–2):98–105.
  • Rahavi S, Monshi A, Emadi R, et al. Determination of Crystallite Size in Synthetic and Natural Hydroxyapatite: a Comparison between XRD and TEM Results. Adv Mat Res. 2012;620:28–34.
  • Rodriguez-Lorenzo LM, Hart JN, Gross KA. Structural and Chemical Analysis of Well-Crystallized Hydroxyfluorapatites. J Phys Chem B. 2003;107(33):8316–8320.
  • Ergun C, Webster TJ, Bizios R, et al. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. J Biomed Mater Res. 2001;59(2):305–311.
  • Miyaji F, Kuno Y, Suyama Y. Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull. 2005;40(2):209–220.
  • Liao CJ, Lin FH, Chen KS, et al. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomater. 1999;20(19):1807–1813.
  • Rhee SH, Lee JD, Tanaka J. Nucleation of Hydroxyapatite Crystal through Chemical Interaction with Collagen. J Am Ceram Soc. 2004;83(11):2890–2892.
  • Gasga JR, Piñeiro ELM, Álvarez GR, et al. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Mater Sci Eng C. 2013;33(8):4568–4574.
  • Legeros RZ. Effect of carbonated on the lattice parameters of apatite, crystallographic studies of the carbonated subsitution in the apatite structure. Nature. 1965;206(982):403–404.
  • Okazaki M, Takahashi J, Kimura H, et al. Crystallinity, solubility, and dissolution rate behavior of fluoridated CO3 apatites. J Biomed Mater Res. 1982;16(6):851–860.
  • Yuan P, Southon PD, Liu Z, et al. Functionalization of Halloysite Clay Nanotubes by Grafting with γ-Aminopropyltriethoxysilane. J Phys Chem C. 2008;112(40):15742–15751.
  • Xue H, Sigg L, Kari FG. Speciation of EDTA in Natural Waters: exchange Kinetics of Fe-EDTA in River Water. Environ Sci Technol. 1995;29(1):59–68.
  • Sun B, Zhao FJ, Lombi E, et al. Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut. 2001;113(2):111–120.
  • Wang Z, Xu Z, Zhao W, et al. A potential mechanism for amino acid-controlled crystal growth of hydroxyapatite. J Mater Chem B. 2015;3:9157–9167.