727
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

Evolution of the Cu2ZnSnS4 phase based on the sulfurization-crystallisation duration of the CuS/SnS/ZnS stack formed by thermal evaporation

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 197-207 | Received 26 Jul 2022, Accepted 13 Feb 2023, Published online: 27 Feb 2023

References

  • Balaji G, Balasundaraprabhu R, Prasanna S, et al. Investigations of RF magnetron sputtered CZTS absorber layer thin films prepared using sulfur induced binary targets without sulfurization. Opt Mater. 2018;75:56–60.
  • Paranthaman MP, Wong-Ng W, Bhattacharya RN. Semiconductor materials for solar photovoltaic cells. Switzerland: Springer; 2016.
  • Liu WS, Chen SY, Huang CS, et al. Investigation of Zn/Sn ratio for improving the material quality of CZTS thin films with the reduction of Cu2-xS secondary phase. J Alloys Compd. 2021;853:157237.
  • Kaza J, Pasumarthi MR, Avadhani PS. Superstrate and substrate thin film configuration of CdS/CZTS solar cell fabricated using SILAR method. Opt Laser Technol. 2020;131:106413.
  • Gour KS, Karade V, Pandey A, et al. High-speed, low-bias operated, broadband (Vis-NIR) photodetector based on sputtered Cu2ZnSn(S, Se)4 (CZTSSe) thin films. Sens Actuator A Phys. 2020;314:112231.
  • Gour KS, Bhattacharyya B, Singh OP, et al. Nanostructured Cu2ZnSnS4 (CZTS) thin film for self-powered broadband photodetection. J Alloys Compd. 2018;735:285–290.
  • Gour KS, Singh OP, Bhattacharyya B, et al. Enhanced photoresponse of Cu2ZnSn(S, Se)4 based photodetector in visible range. J Alloys Compd. 2017;694:119–123.
  • Gour KS, Karade V, Babar P, et al. Potential Role of Kesterites in Development of Earth-Abundant Elements-Based Next Generation Technology. Sol RRL. 2021;5(4):1–22.
  • Kannan PK, Chaudhari S, Dey SR, et al. Progress in Development of CZTS for Solar Photovoltaics Applications. Enc Smart Mater. 2022;2. 681–698.
  • Hameed SA, Bakr NA, Hassan AM, et al. Structural and optical properties of Cu2ZnSnS4 thin films fabricated by chemical spray pyrolysis. AIP Conf Proc. 2020;2213:020082.
  • Olgar MA, Sarp AO, Seyhan A, et al. Impact of stacking order and annealing temperature on properties of CZTS thin films and solar cell performance. Renew Energ. 2021;79:1865–1874.
  • Xu X, Guo L, Zhou J, et al. Efficient and Composition-Tolerant Kesterite Cu2ZnSn(S, Se)4 Solar Cells Derived From an In Situ Formed Multifunctional Carbon Framework. Adv Energy Mater. 2021;11(40):2102298.
  • Oulad EZ, Saucedo E, Abd-Lefdil M, et al. Substrate temperature optimization of pulsed-laser-deposited and in-situ Zn-supplemented-CZTS films and their integration into photovoltaic devices. J Alloys Compd. 2022;893:162292.
  • Ferdaous MT, Chelvanathan P, Shahahmadi SA, et al. Compositional disparity in Cu2ZnSnS4 (CZTS) thin film deposited by RF-sputtering from a single quaternary compound target. Mater Lett. 2018;221:201–205.
  • Khemiri N, Chamekh S, Kanzari M. Properties of thermally evaporated CZTS thin films and numerical simulation of earth abundant and non toxic CZTS/Zn(S,O) based solar cells. Sol Energy. 2020;207:496–502.
  • Azmi S, Moujib A, Layachi OA, et al. Towards phase pure kesterite Cu2ZnSnS4 absorber layers growth via single step free sulfurization electrodeposition under a fix applied potential on Mo substrate. J Alloys Compd. 2020;842:155821.
  • Ahmoum H, Li G, Su’ait MS, et al. The impact of precursor thickness and surface roughness on the power factor of Cu2ZnSnS4 (CZTS) at near room temperature: spin-coating deposition. Superlattices Microstruct. 2021;160:107091.
  • Deokate RJ, Chavan HS, Im H, et al. Spray-deposited kesterite Cu2ZnSnS4 (CZTS): optical, structural, and electrical investigations for solar cell applications. Ceram Int. 2022;48(1):795–802.
  • Olgar MA. Optimization of sulfurization time and temperature for fabrication of Cu2ZnSnS4 (CZTS) thin films. Superlattices Microstruct. 2018;126:32–41.
  • Rodríguez-Valencia JM, Adendaño-Guin SH, Rojas-Blanco L, et al. Admix of Cu2 ZnSnS4 and ZnS as thin film to absorb visible light. J Mater Sci Mater Electron. 2019;30(5):5266–5272.
  • Sánchez TG, Mathew X, Mathews NR. Obtaining phase-pure CZTS thin films by annealing vacuum evaporated CuS/SnS/ZnS stack. J Cryst Growth. 2016;445:15–23.
  • Shin SW, Pawar SM, Park CY, et al. Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Sol Energy Mater Sol Cells. 2011;95(12):3202–3206.
  • Olgar MA, Seyhan A, Sarp A, et al. The choice of Zn or ZnS layer in the stacked precursors for preparation of Cu2ZnSnS4 (CZTS) thin films. Superlattices Microstruct. 2020;146:106669.
  • Singh OP, Sharma A, Gour KS, et al. Fast switching response of Na-doped CZTS photodetector from visible to NIR range. Sol Energy Mater Sol Cells. 2016;157:28–34.
  • Fan D, Zhang R, Zhu Y, et al. Structural development and dynamic process in sulfurizing precursors to prepare Cu2ZnSnS4 absorber layer. J Alloys Compd. 2014;583:566–573.
  • Sanchez TG, Regalado-Pérez E, Mathew X, et al. Ge doped Cu2ZnSnS4: an investigation on absorber recrystallization and opto-electronic properties of solar cell. Sol Energy Mater Sol Cells. 2019;198:44–52.
  • Nguyen DC, Ito S, Dung DVA. Effects of annealing conditions on crystallization of the CZTS absorber and photovoltaic properties of Cu(Zn,Sn)(S,Se)2 solar cells. J Alloys Compd. 2015;632:676–680.
  • Erkan S, Yagmyrov A, Altuntepe A, et al. Integration of single layer graphene into CZTS thin film solar cells. J Alloys Compd. 2022;920:166041.
  • Majeed Khan MA, Kumar S, Alhoshan M, et al. Spray pyrolysed Cu2ZnSnS4 absorbing layer: a potential candidate for photovoltaic applications. Opt Laser Technol. 2013;49:196–201.
  • Xu J, Yang J, Jiang S, et al. Effects of element ratio on robustness of CZTS films: variations in sulfurization temperature. Ceram Int. 2020;46(16):25927–25934.
  • Fontané X, Izquierdo-Roca V, Saucedo E, et al. Vibrational properties of stannite and kesterite type compounds: raman scattering analysis of Cu2(Fe,Zn)SnS4. J Alloys Compd. 2012;539:190–194.
  • Ashfaq A, Jacon J, Ali A, et al. Designing of Seebeck coefficient and electrical conductivity in CZTS thin films for giant power factor. Ceram Int. 2020;46(7):9646–9655.
  • Jung HR, Shin SW, Gurav KV, et al. Phase evolution of Cu2ZnSnS4 (CZTS) kesterite thin films during the sulfurization process. Ceram Int. 2015;41(10):13006–13011.
  • Dias S, Krupanidhi SB. Solution processed Cu2SnS3 thin films for visible and infrared photodetector applications. AIP Adv. 2016;6(2):025217.
  • Yang J, Xu J, Miao D, et al. Compositional, structural, morphological, and optical characterization of magnetron sputtered CZTS thin films from various argon flow rate. Physica B Condens Matter. 2021;623:413375.
  • Chaudhari VP, Mondal RS, Chaudhuri TK, et al. Synthesis, characterization and significant antimicrobial properties of CZTS nanoparticles against pathogenic strains. J Indian Chem Soc. 2022;99(3):100351.
  • Ashfaq A, Jacob J, Amami M, et al. Effect of Al-doping on the thermoelectric properties of CZTS thin film grown by sol-gel method. Solid State Commun. 2022;345:114701.
  • Altowairqi Y, Alsubaie A, Stroh KP, et al. The effect of annealing conditions: temperature, time, ramping rate and atmosphere on nanocrystal Cu2ZnSnS4 (CZTS) thin film solar cell properties. Mater Today Proc. 2019;18:473–486.
  • Xu J, Yang J, Jiang S, et al. Secondary phases and disorder degree investigation of Cu2ZnSnS4 films. Ceram Int. 2021;47(3):4135–4142.
  • Pal K, Singh P, Bhaduri A, et al. Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: a review. Sol Energy Mater Sol Cells. 2019;196:138–156.
  • Palomera RC, Martínez OS, Pantoja-Enriquez J, et al. Development and studies of Cd1−xMgxTe thin films with varying band gaps to understand the Mg incorporation and the related material properties. Appl Therm Eng. 2017;114:1169–1175.
  • Xu J, Shang S, Yang J, et al. Effect of sodium-doping on the performance of CZTS absorb layer: single and bifacial sodium-incorporation method. Sol Energy. 2021;221:476–482.
  • Bakr NA, Salman SA, Hameed SA. Deposition and characterization of Cu2ZnSnS4 thin films for solar cell applications. Int J Tech Res Appl. 2018;13(6):3379–3388.
  • Borrego Pérez JA, Courel M, Valderrama RC, et al. Structural, optical, and photoluminescence properties of erbium doped TiO2 films. Vacuum. 2019;169:108873.
  • Ilaiyaraja P, Sharma V, Dakshinamurthy AC, et al. Fabrication of metal chalcogenide thin films by a facile thermolysis process under air ambient using metal-3-mercaptopropionic acid complex. Mater Res Bull. 2021;141:111346.
  • Sivagamai D, Geetha PB. Composition dependent structural, morphological, optical and electrical properties of CdS:Co window layer grown by chemical bath deposition. Mater Sci Energy Technol. 2020;3:709–718.
  • Jiang F, Shen H. Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor. RSC Adv. 2013;3(45):23474–23481.
  • Sotelo Marquina RG, Sanchez TG, Regalado-Perez E, et al. CuSbS2 thin films by heat treatment of thermally evaporated Sb2S3/CuS stack: effect of [Cu]/[Sb] ratio on the physical properties of the films. Vacuum. 2022;204:111355.
  • Flores-Ventura O, Courel M, Sanchez TG, et al. Obtaining the solid solution Sb2S3-xSex by selenization of Sb2S3 film and identifying the thermal processing parameters to achieve recrystallization while maintaining phase-purity. Mater Sci Semicond Process. 2021;135:106081.
  • Henry J, Mohanraj K, Sivakumar G. Effect of pH-induced on the photosensitivity of non-toxic Cu2ZnSnS4 thin film by chemical bath deposition. Optik. 2017;141:139–145.
  • Wang Y, Huang Y, Lee Alex YS, et al. Influence of sintering temperature on screen printed Cu2ZnSnS4 (CZTS) films. J Alloys Compd. 2012;539:237–241.
  • Rawat K, Shishodia PK. Enhancement of photosensitivity in bismuth doped Cu2ZnSnS4 thin films. Phys Status Solidi Rapid Res Lett. 2016;10(12):890–894.