156
Views
0
CrossRef citations to date
0
Altmetric
FULL LENGTH ARTICLE

Synthesis, crystal structure and properties of YB2C2

, , , , &
Pages 203-213 | Received 03 Jan 2024, Accepted 28 Apr 2024, Published online: 10 May 2024

References

  • Fahrenholtz WG, Hilmas GE. Ultra-high temperature ceramics: materials for extreme environments. Scripta Mater. 2017;39:25–32. doi: 10.1016/j.scriptamat.2016.10.018
  • Zhang SL, Li X, Zuo J, et al. Research progress on active thermal protection for hypersonic vehicles. Prog Aerosp Sci. 2020;119:100646. doi: 10.1016/j.paerosci.2020.100646
  • Zhao GR, Chen JX, Li YM, et al. YB2C2: a machinable layered ternary ceramic with excellent damage tolerance. Scripta Mater. 2016;124:86–89. doi: 10.1016/j.scriptamat.2016.06.041
  • Li YM, Tian L, Bao YW, et al. YB2C2: the first damage tolerant ceramic with melting point over 2500 °C. J Eur Ceram Soc. 2023;43(8):3830–3835. doi: 10.1016/j.jeurceramsoc.2023.02.010
  • Khmelevskyi S, Mohn P, Redinger J, et al. Electronic structure of the layered diboride dicarbide superconductor YB2C2. Supercond Sci Tech. 2005;18(4):422. doi: 10.1088/0953-2048/18/4/008
  • Reckeweg O, DiSalvo FJ. Different structural models of YB2C2 and GdB2C2 on the basis of single-crystal X-ray data. Zeitschrift für Naturforschung B. 2014;69(3):289–293. doi: 10.5560/znb.2014-3333
  • Zhou YC, Xiang HM, Wang XH, et al. Electronic structure and mechanical properties of layered compound YB2C2: a promising precursor for making two dimensional (2D) B2C2 nets. J Mater Sci Technol. 2017;33(9):1044–1054. doi: 10.1016/j.jmst.2016.09.028
  • Nguyen VQ, Kim JS, Lee SH. Synthesis of YB2C2 by high-energy ball milling and reactive spark plasma sintering. J Am Ceram Soc. 2021;104(3):1229–1236. doi: 10.1111/jace.17524
  • Chen H, Li Y, Guo Y, et al. ScB2C2: the first high damage tolerant ultra-high temperature ceramic with hydrolysis resistance. J Eur Ceram Soc. 2024;44(6):3683–3695. doi: 10.1016/j.jeurceramsoc.2024.01.050
  • Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Mat. 2002;14(11):2717–2744. doi: 10.1088/0953-8984/14/11/301
  • Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41(11):7892–7895. doi: 10.1103/PhysRevB.41.7892
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–5192. doi: 10.1103/PhysRevB.13.5188
  • Milman V, Warren MC. Elasticity of hexagonal BeO. J Phys Condens Mat. 2001;13(2):241–251. doi: 10.1088/0953-8984/13/2/302
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15–50. doi: 10.1016/0927-0256(96)00008-0
  • Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z Angew Meath Mech. 1929;9(1):49–58. doi: 10.1002/zamm.19290090104
  • Green DJ. An introduction to the mechanical properties of ceramics. Cambridge (UK): Cambridge University Press; 1998.
  • Bauer J, Halet JF, Saillard JY. Rare earth metal borocarbides: examples of coordination compounds in solid-state chemistry. Coordin Chem Rev. 1998;178:723–753. doi: 10.1016/S0010-8545(98)00106-4
  • Babizhetskyy V, Simon A, Bauer J. Interaction of lanthanum with boron and carbon: phase diagram and structural chemistry. Monatsh Chem. 2014;145(6):869–876. doi: 10.1007/s00706-014-1172-2
  • Babizhetskyy V, Simon A, Halet JF. Investigations in the ternary praseodymium-boron-carbon system: solid-state phase diagram and structural chemistry. Solid State Sci. 2015;47:73–77. doi: 10.1016/j.solidstatesciences.2014.12.008
  • Wang W, Yao D, Liang H, et al. Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive. J Am Ceram Soc. 2020;103(10):5567–5572. doi: 10.1111/jace.17271
  • Yan M, Liu Y, B SG, et al. In situ synchrotron radiation to understand the pathways for the scavenging of oxygen in commercially pure Ti and Ti–6Al–4V by yttrium hydride. Scripta Mater. 2013;68(1):63–66. doi: 10.1016/j.scriptamat.2012.09.024
  • Manoun B, Gulve RP, Saxena SK, et al. Compression behavior of M2AlC (M = Ti, V, Cr, Nb, and Ta) phase to above 50 GPa. Phys Rev B. 2006;73(2):024110. doi: 10.1103/PhysRevB.73.024110
  • Wang JM, Wang JY, Zhou YC, et al. Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: an ab initio study. Acta Mater. 2008;56(7):1511–1518. doi: 10.1016/j.actamat.2007.12.003
  • Born M, Huang K. Dynamical theory of crystal lattices. London: Oxford University Press; 1954.
  • Wang XH, Zhou YC. Microstructure and properties of Ti3AlC2 prepared by the solid–liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 2002;50(12):3141–3149. doi: 10.1016/S1359-6454(02)00117-9
  • Hu CF, He LF, Zhang J, et al. Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method. J Eur Ceram Soc. 2008;28(8):1679–1685. doi: 10.1016/j.jeurceramsoc.2007.10.006
  • Bai Y, Kong F, He X, et al. Thermal shock behavior of Ti2AlC from 200° C to 1400° C. J Am Ceram Soc. 2017;100(9):4190–4198. doi: 10.1111/jace.14965
  • Wang Z, Hong C, Zhang X, et al. Microstructure and thermal shock behavior of ZrB2–SiC–graphite composite. Mater Chem Phy. 2009;113(1):338–341. doi: 10.1016/j.matchemphys.2008.07.095
  • Zhi W, Qiang Q, Zhanjun W, et al. The thermal shock resistance of the ZrB2–SiC–ZrC ceramic. Mater Design. 2011;32(6):3499–3503. doi: 10.1016/j.matdes.2011.02.056
  • Parthasarathy TA, Rapp RA, Opeka M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 2007;55(17):5999–6010. doi: 10.1016/j.actamat.2007.07.027