2,841
Views
14
CrossRef citations to date
0
Altmetric
Articles

Diverse biological characteristics and varied virulence of H7N9 from Wave 5

, ORCID Icon, , , , , , , , , , , , , , , & show all
Pages 94-102 | Received 04 Jun 2018, Accepted 03 Dec 2018, Published online: 16 Jan 2019

References

  • WHO.int. Human infection with avian influenza A(H7N9) virus –China: Update 5 September 2018. 2018. available from: http://www.who.int/csr/don/05-september-2018-ah7n9-china/en/>.
  • Quan C, Shi W, Yang Y, et al. New threats from H7N9 influenza virus: spread and evolution of high- and low-pathogenicity variants with high genomic diversity in wave five. J Virol. 2018;92:e00301–e00318. DOI:10.1128/JVI.00301-18.
  • Watanabe T, Kiso M, Fukuyama S, et al. Characterization of H7N9 influenza A viruses isolated from humans. Nature. 2013;501:551–555. DOI:10.1038/nature12392.
  • Zhang Q, Shi J, Deng G, et al. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science. 2013;341:410–414. DOI:10.1126/science.1240532.
  • Xu L, Bao L, Deng W, et al. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets. J Infect Dis. 2014;209:551–556. DOI:10.1093/infdis/jit474.
  • Liu J, Xiao H, Wu Y, et al. H7N9: a low pathogenic avian influenza A virus infecting humans. Curr Opin Virol. 2014;5:91–97. DOI:10.1016/j.coviro.2014.03.001.
  • Zhang F, Bi Y, Wang J, et al. Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China. J Infect. 2017;75:71–75. DOI:S0163-4453(17)30108-1[pii]10.1016/j.jinf.2017.04.001.
  • Qi W, Jia W, Liu D, et al. Emergence and adaptation of a novel highly pathogenic H7N9 influenza virus in birds and humans from a 2013-human-infecting low pathogenic ancestor. J Virol. 2017. DOI:10.1128/JVI.00921-17.
  • Yang L, Zhu W, Li X, et al. Genesis and spread of newly emerged highly pathogenic H7N9 avian viruses in mainland China. J Virol. 2017. DOI:10.1128/JVI.01277-17.
  • Shi Y, Zhang W, Wang F, et al. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science. 2013;342:243–247. DOI:10.1126/science.1242917.
  • Yang H, Carney PJ, Chang JC, et al. Structural analysis of the hemagglutinin from the recent 2013 H7N9 influenza virus. J Virol. 2013;87:12433–12446. DOI:10.1128/JVI.01854-13.
  • Xu R, de Vries RP, Zhu X, et al. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. Science. 2013;342:1230–1235. DOI:10.1126/science.1243761342/6163/1230[pii] doi: 10.1126/science.1243761
  • Shi Y, Wu Y, Zhang W, et al. Enabling the “host jump”: structural determinants of receptor-binding specificity in influenza A viruses. Nat Rev Microbiol. 2014;12:822–831. DOI:10.1038/nrmicro3362.
  • Imai M, Watanabe T, Kiso M, et al. A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets. Cell Host Microbe. 2017;22:615–626.e8. DOI:10.1016/j.chom.2017.09.008.
  • Shi J, Deng G, Kong H, et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res 2017; 27:1409–1421. DOI:10.1038/cr.2017.129.
  • Gao GF. Influenza and the live poultry trade. Science. 2014;344:235, DOI:10.1126/science.1254664.
  • Wu J, Ke C, Lau EHY, et al. Influenza H5/H7 virus vaccination in poultry and reduction of zoonotic infections, Guangdong Province, China, 2017-18. Emerg Infect dis. 2019;25:116–118. DOI:10.3201/eid2501.181259.
  • Xiong X, Martin SR, Haire LF, et al. Receptor binding by an H7N9 influenza virus from humans. Nature. 2013;499:496–499. DOI:10.1038/nature12372.
  • Bi Y, Shi W, Chen J, et al. CASCIRE surveillance network and work on avian influenza viruses. Science China Life Sciences. 2017;60:1386–1391. DOI:10.1007/s11427-017-9251-2.
  • Bi Y, Xie Q, Zhang S, et al. Assessment of the internal genes of influenza A (H7N9) virus contributing to high pathogenicity in mice. J Virol. 2015;89:2–13. DOI:10.1128/JVI.02390-14.
  • Xiao C, Ma W, Sun N, et al. PB2-588V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci Rep. 2016;6:19474. DOI:10.1038/srep19474.
  • Song W, Wang P, Mok BW-Y, et al. The K526R substitution in viral protein PB2 enhances the effects of E627 K on influenza virus replication. Nat Commun. 2014;5:5509. DOI:10.1038/ncomms6509.
  • Mok CK, Lee HHY, Lestra M, et al. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol. 2014;88:3568–3576. DOI:10.1128/JVI.02740-13.
  • Wu Y, Bi Y, Vavricka CJ, et al. Characterization of two distinct neuraminidases from avian-origin human-infecting H7N9 influenza viruses. Cell Res. 2013;23:1347–1355. DOI:10.1038/cr.2013.144.
  • Sun X, Belser JA, Pappas C, et al. Risk assessment of fifth-wave H7N9 influenza A viruses in mammalian models. J Virol. 2018. DOI:10.1128/JVI.01740-18.
  • Bi Y, Zhang Z, Liu W, et al. Highly pathogenic avian influenza A(H5N1) virus struck migratory birds in China in 2015. Sci Rep. 2015;5:12986. DOI:10.1038/srep12986.
  • Reuman PD, Keely S, Schiff GM. Assessment of signs of influenza illness in the ferret model. J Virol Methods. 1989;24:27–34. doi: 10.1016/0166-0934(89)90004-9
  • Bi Y, Chen Q, Wang Q, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe. 2016;20:810–821. DOI:S1931-3128(16)30448-6[pii]10.1016/j.chom.2016.10.022.
  • Bi Y, Xiao H, Chen Q, et al. Changes in the length of the neuraminidase stalk region impact H7N9 virulence in mice. J Virol. 2016;90:2142–2149. DOI:10.1128/JVI.02553-15.