2,194
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Continuing evolution of highly pathogenic H5N1 viruses in Bangladeshi live poultry markets

, , , , , , , , , , , , , ORCID Icon & show all
Pages 650-661 | Received 26 Dec 2018, Accepted 24 Mar 2019, Published online: 24 Apr 2019

References

  • Saw TA, Lim W, Shortridge K, et al. Isolation of avian influenza A(H5N1) viruses from humans–Hong Kong, May–December 1997. MMWR Morb Mortal Wkly Rep. 1997;46:1204–1207.
  • World Health Organization. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003-2018. Geneva, Switzerland: WHO (as of 21 September 2018) (2018). Available from: https://www.who.int/influenza/human_animal_interface/2018_09_21_tableH5N1.pdf?ua=1.
  • Biswas PK, Christensen JP, Ahamed SSU, et al. Avian influenza outbreaks in chickens, Bangladesh. Emerg Infect Dis. 2008;14(12):1909–1912. doi: 10.3201/eid1412.071567
  • Marinova-Petkova A, Shanmuganatham K, Feeroz MM., et al. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh. Emerg Microbes Infect. 2014;3:e11. doi: 10.1038/emi.2014.11
  • Marinova-Petkova A, Shanmuganatham K, Feeroz MM., et al. The continuing evolution of H5N1 and H9N2 influenza viruses in Bangladesh between 2013 and 2014. Avian Dis. 2016;60:108–117. doi: 10.1637/11136-050815-Reg
  • Khan SU, Gurley ES, Gerloff N, et al. Avian influenza surveillance in domestic waterfowl and environment of live bird markets in Bangladesh, 2007–2012. Sci Rep. 2018;8(1):9396. doi: 10.1038/s41598-018-27515-w
  • Olsen B, Munster VJ, Wallensten A, et al. Global patterns of influenza a virus in wild birds. Science. 2006;312(5772):384–388. doi: 10.1126/science.1122438
  • Takekawa JY, Newman SH., Xiao X, et al. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis. 2010;54:466–476. doi: 10.1637/8914-043009-Reg.1
  • Takekawa JY, Prosser D, Collins B, et al. Movements of wild ruddy shelducks in the Central Asian flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1. Viruses. 2013;5:2129–2152. doi: 10.3390/v5092129
  • Palm EC, Newman Scott H, Prosser DJ, et al. Mapping migratory flyways in Asia using dynamic Brownian bridge movement models. Mov Ecol. 2015;3:3. doi: 10.1186/s40462-015-0029-6
  • Gerloff NA, Khan SU, Zanders N, et al. Genetically diverse low pathogenicity avian influenza A virus subtypes co-circulate among poultry in Bangladesh. PLoS One. 2016;11:e0152131. doi: 10.1371/journal.pone.0152131
  • Lepage D. Avibase – Bird checklist of the world (Clements, version 2018, Bangladesh) [cited 2018 Oct 25]. Available from: https://avibase.bsc-eoc.org/checklist.jsp?region=BD&list=clements.
  • Monne I, Yamage M, Dauphin G, et al. Reassortant avian influenza A(H5N1) viruses with H9N2-PB1 gene in poultry, Bangladesh. Emerg Infect Dis. 2013;19:1630–1634. doi: 10.3201/eid1910.130534
  • Gerloff NA, Khan SU, Balish A, et al. Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh. Virology. 2014;450–451:297–307. doi: 10.1016/j.virol.2013.12.023
  • Barman S, Marinova-Petkova A, Hasan MK, et al. Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh. Emerg Microbes Infect. 2017;6(8):e72.
  • Turner JC, Feeroz MM, Hasan MK, et al. Insight into live bird markets of Bangladesh: an overview of the dynamics of transmission of H5N1 and H9N2 avian influenza viruses. Emerg Microbes Infect. 2017;6(3):e12.
  • Shanmuganatham K, Feeroz MM, Jones-Engel L, et al. Antigenic and molecular characterization of avian influenza A(H9N2) viruses, Bangladesh. Emerg Infect Dis. 2013;19:1393–1402. doi: 10.3201/eid1909.130336
  • Bhat S, Nagarajan S, Kumar M, et al. Antigenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from poultry in India, 2006–2015. Arch Virol. 2017;162(2):487–494. doi: 10.1007/s00705-016-3134-y
  • Duvvuri VR, Duvvuri B, Cuff WR, et al. Role of positive selection pressure on the evolution of H5N1 hemagglutinin. Genom Proteom Bioinform.. 2009;7(1–2):47–56. doi: 10.1016/S1672-0229(08)60032-7
  • Dong G, Tan D, Shi J, et al. Complex reassortment of multiple subtypes of avian influenza viruses in domestic ducks at the Dongting Lake region in China. J Virol. 2013;87:9452–9462. doi: 10.1128/JVI.00776-13
  • Negovetich NJ, Feeroz MM, Jones-Engel L, et al. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza. PLoS One. 2011;6:e19311. doi: 10.1371/journal.pone.0019311
  • Zhou B, Donnelly ME, Scholes DT, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol. 2009;83(19):10309–10313. doi: 10.1128/JVI.01109-09
  • Bao Y, Bolotov P, Dernovoy D, et al. The influenza virus resource at the National Center for Biotechnology Information. J Virol. 2008;82:596–601. Available from: https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi? doi: 10.1128/JVI.02005-07
  • Global Initiative on Sharing All Influenza Data EpiFlu Database, GISAID. Munich, Germany: Freunde von GISAID, 2016 [cited 2018 Oct 10]. Available from http://platform.gisaid.org.
  • Hall TA. Bioedit. Carlsbad (CA): Ibis Therapeutics; 1999.
  • Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–526.
  • Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary Genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054