3,005
Views
53
CrossRef citations to date
0
Altmetric
Review Article

Clostridium difficile ribotype 017 – characterization, evolution and epidemiology of the dominant strain in Asia

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 796-807 | Received 27 Mar 2019, Accepted 16 May 2019, Published online: 29 May 2019

References

  • Squire MM, Riley TV. Clostridium difficile infection in humans and piglets: a ‘One Health’ opportunity. Curr Top Microbiol Immunol. 2013;365:299–314.
  • Leffler DA, Lamont JT. Clostridium difficile Infection. N Engl J Med. 2015;373:287–288.
  • Chumbler NM, Rutherford SA, Zhang Z, et al. Crystal structure of Clostridium difficile toxin A. Nat Microbiol. 2016;1:15002. doi: 10.1038/nmicrobiol.2015.2
  • Rupnik M. Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect. 2007;13:457–459. doi: 10.1111/j.1469-0691.2007.01687.x
  • Bauer MP, Notermans DW, van Benthem BH, et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377:63–73. doi: 10.1016/S0140-6736(10)61266-4
  • Stubbs SL, Brazier JS, O'Neill GL, et al. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol. 1999;37:461–463.
  • Fawley WN, Knetsch CW, MacCannell DR, et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One. 2015;10(2):e0118150. doi: 10.1371/journal.pone.0118150
  • van den Berg RJ, Claas EC, Oyib DH, et al. Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol. 2004;42:1035–1041. doi: 10.1128/JCM.42.3.1035-1041.2004
  • Kim J, Kim Y, Pai H. Clinical characteristics and treatment outcomes of Clostridium difficile infections by PCR ribotype 017 and 018 strains. PLoS One. 2016;11:e0168849. doi: 10.1371/journal.pone.0168849
  • Goorhuis A, Debast SB, Dutilh JC, et al. Type-specific risk factors and outcome in an outbreak with 2 different Clostridium difficile types simultaneously in 1 hospital. Clin Infect Dis. 2011;53:860–869. doi: 10.1093/cid/cir549
  • Walker AS, Eyre DW, Wyllie DH, et al. Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. Clin Infect Dis. 2013;56:1589–1600. doi: 10.1093/cid/cit127
  • Kim J, Pai H, Seo MR, et al. Clinical and microbiologic characteristics of tcdA-negative variant Clostridium difficile infections. BMC Infect Dis. 2012;12:109. doi: 10.1186/1471-2334-12-109
  • Pituch H, van den Braak N, van Leeuwen W, et al. Clonal dissemination of a toxin-A-negative/toxin-B-positive Clostridium difficile strain from patients with antibiotic-associated diarrhea in Poland. Clin Microbiol Infect. 2001;7:442–446. doi: 10.1046/j.1198-743x.2001.00312.x
  • Kato H, Kato N, Watanabe K, et al. Analysis of Clostridium difficile isolates from nosocomial outbreaks at three hospitals in diverse areas of Japan. J Clin Microbiol. 2001;39:1391–1395. doi: 10.1128/JCM.39.4.1391-1395.2001
  • Rupnik M, Kato N, Grabnar M, et al. New types of toxin A-negative, toxin B-positive strains among Clostridium difficile isolates from Asia. J Clin Microbiol. 2003;41:1118–1125. doi: 10.1128/JCM.41.3.1118-1125.2003
  • Kuijper EJ, de Weerdt J, Kato H, et al. Nosocomial outbreak of Clostridium difficile-associated diarrhoea due to a clindamycin-resistant enterotoxin A-negative strain. Eur J Clin Microbiol Infect Dis. 2001;20:528–534. doi: 10.1007/s100960100550
  • al-Barrak A, Embil J, Dyck B, et al. An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital. Can Commun Dis Rep. 1999;25:65–69.
  • Goorhuis A, Legaria MC, van den Berg RJ, et al. Application of multiple-locus variable-number tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires, Argentina. Clin Microbiol Infect. 2009;15(12):1080–1086. doi: 10.1111/j.1469-0691.2009.02759.x
  • Chia JH, Lai HC, Su LH, et al. Molecular epidemiology of Clostridium difficile at a medical center in Taiwan: persistence of genetically clustering of A(-)B(+) isolates and increase of A(+)B(+) isolates. PLoS One. 2013;8(10):e75471. doi: 10.1371/journal.pone.0075471
  • Drudy D, Harnedy N, Fanning S, et al. Isolation and characterisation of toxin A-negative, toxin B-positive Clostridium difficile in Dublin, Ireland. Clin Microbiol Infect. 2007;13(3):298–304. doi: 10.1111/j.1469-0691.2006.01634.x
  • Drudy D, Harnedy N, Fanning S, et al. Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive Clostridium difficile. Infect Control Hosp Epidemiol. 2007;28(8):932–940. doi: 10.1086/519181
  • Cairns MD, Preston MD, Lawley TD, et al. Genomic epidemiology of a protracted hospital outbreak caused by a toxin A-negative Clostridium difficile sublineage PCR ribotype 017 strain in London, England. J Clin Microbiol. 2015;53(10):3141–3147. doi: 10.1128/JCM.00648-15
  • Akerlund T, Alefjord I, Dohnhammar U, et al. Geographical clustering of cases of infection with moxifloxacin-resistant Clostridium difficile PCR-ribotypes 012, 017 and 046 in Sweden, 2008 and 2009. Euro Surveill. 2011;16(10). doi: 10.2807/ese.16.10.19813-en
  • Hall IC, O'Toole E. Intestinal flora in new-born infants - with a description of a new pathogenic anaerobe, Bacillus difficilis. Am J Dis Child. 1935;49(2):390–402. doi: 10.1001/archpedi.1935.01970020105010
  • Bartlett JG, Chang TW, Onderdonk AB. Will the real Clostridium species responsible for antibiotic-associated colitis please step forward? Lancet. 1978;311(8059):338. doi: 10.1016/S0140-6736(78)90118-6
  • Teasley DG, Gerding DN, Olson MM, et al. Prospective randomised trial of metronidazole versus vancomycin for Clostridium-difficile-associated diarrhoea and colitis. Lancet. 1983;322(8358):1043–1046. doi: 10.1016/S0140-6736(83)91036-X
  • Lyerly DM, Saum KE, MacDonald DK, et al. Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun. 1985;47(2):349–352.
  • Kato H, Kato N, Watanabe K, et al. Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol. 1998;36(8):2178–2182.
  • Lyerly DM, Sullivan NM, Wilkins TD. Enzyme-linked immunosorbent assay for Clostridium difficile toxin A. J Clin Microbiol. 1983;17(1):72–78.
  • Laughon BE, Viscidi RP, Gdovin SL, et al. Enzyme immunoassays for detection of Clostridium difficile toxins A and B in fecal specimens. J Infect Dis. 1984;149(5):781–788. doi: 10.1093/infdis/149.5.781
  • Riegler M, Sedivy R, Pothoulakis C, et al. Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro. J Clin Invest. 1995;95(5):2004–2011. doi: 10.1172/JCI117885
  • Johnson S, Kent SA, O'Leary KJ, et al. Fatal pseudomembranous colitis associated with a variant Clostridium difficile strain not detected by toxin A immunoassay. Ann Intern Med. 2001;135(6):434–438. doi: 10.7326/0003-4819-135-6-200109180-00012
  • Cairns MD, Preston MD, Hall CL, et al. Comparative genome analysis and global phylogeny of the toxin variant Clostridium difficile PCR ribotype 017 reveals the evolution of two independent sublineages. J Clin Microbiol. 2017;55(3):865–876. doi: 10.1128/JCM.01296-16
  • Elliott B, Androga GO, Knight DR, et al. Clostridium difficile infection: evolution, phylogeny and molecular epidemiology. Infect Genet Evol. 2017;49:1–11. doi: 10.1016/j.meegid.2016.12.018
  • Depitre C, Delmee M, Avesani V, et al. Serogroup F strains of Clostridium difficile produce toxin B but not toxin A. J Med Microbiol. 1993;38(6):434–441. doi: 10.1099/00222615-38-6-434
  • Senoh M, Kato H, Fukuda T, et al. Predominance of PCR-ribotypes, 018 (smz) and 369 (trf) of Clostridium difficile in Japan: a potential relationship with other global circulating strains? J Med Microbiol. 2015;64(10):1226–1236. doi: 10.1099/jmm.0.000149
  • Johnson S, Sambol SP, Brazier JS, et al. International typing study of toxin A-negative, toxin B-positive Clostridium difficile variants. J Clin Microbiol. 2003;41(4):1543–1547. doi: 10.1128/JCM.41.4.1543-1547.2003
  • Rupnik M, Brazier JS, Duerden BI, et al. Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. Microbiology. 2001;147(Pt 2):439–447. doi: 10.1099/00221287-147-2-439
  • Tenover FC, Akerlund T, Gerding DN, et al. Comparison of strain typing results for Clostridium difficile isolates from North America. J Clin Microbiol. 2011;49(5):1831–1837. doi: 10.1128/JCM.02446-10
  • Griffiths D, Fawley W, Kachrimanidou M, et al. Multilocus sequence typing of Clostridium difficile. J Clin Microbiol. 2010;48(3):770–778. doi: 10.1128/JCM.01796-09
  • Ngamskulrungroj P, Sanmee S, Putsathit P, et al. Molecular epidemiology of Clostridium difficile infection in a large teaching hospital in Thailand. PLoS One. 2015;10(5):e0127026. doi:10.1371/journal.pone.0127026.
  • Cohen SH, Tang YJ, Silva J, Jr. Molecular typing methods for the epidemiological identification of Clostridium difficile strains. Expert Rev Mol Diagn. 2001;1(1):61–70. doi: 10.1586/14737159.1.1.61
  • Delmee M, Homel M, Wauters G. Serogrouping of Clostridium difficile strains by slide agglutination. J Clin Microbiol. 1985;21(3):323–327.
  • Kimura B. Will the emergence of core genome MLST end the role of in silico MLST? Food Microbiol. 2018;75:28–36. doi: 10.1016/j.fm.2017.09.003
  • Li R, Xiao D, Yang J, et al. Identification and characterization of Clostridium difficile sequence type 37 genotype by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2018;56(5). doi: 10.1128/JCM.01990-17
  • Cheng J-W, Liu C, Kudinha T, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify MLST clade 4 Clostridium difficile isolates. Diagn Microbiol Infect Dis. 2018;92(1):19–24. doi: 10.1016/j.diagmicrobio.2018.04.011
  • Alfa MJ, Kabani A, Lyerly D, et al. Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile responsible for a nosocomial outbreak of Clostridium difficile-associated diarrhea. J Clin Microbiol. 2000;38(7):2706–2714.
  • Chaves-Olarte E, Low P, Freer E, et al. A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial cytotoxins. J Biol Chem. 1999;274(16):11046–11052. doi: 10.1074/jbc.274.16.11046
  • von Eichel-Streiber C, Zec-Pirnat I, Grabnar M, et al. A nonsense mutation abrogates production of a functional enterotoxin A in Clostridium difficile toxinotype VIII strains of serogroups F and X. FEMS Microbiol Lett. 1999;178(1):163–168. doi: 10.1016/S0378-1097(99)00327-4
  • Drudy D, Fanning S, Kyne L. Toxin A-negative, toxin B-positive Clostridium difficile. Int J Infect Dis. 2007;11(1):5–10. doi: 10.1016/j.ijid.2006.04.003
  • Wang R, Suo L, Chen HX, et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from the Chinese People’s Liberation Army General Hospital in China. Int J Infect Dis. 2018;67:86–91. doi: 10.1016/j.ijid.2017.07.010
  • Persson S, Torpdahl M, Olsen KE. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;14(11):1057–1064. doi: 10.1111/j.1469-0691.2008.02092.x
  • Putsathit P, Maneerattanaporn M, Piewngam P, et al. Prevalence and molecular epidemiology of Clostridium difficile infection in Thailand. New Microbes New Infect. 2017;15:27–32. doi: 10.1016/j.nmni.2016.10.004
  • Collins DA, Gasem MH, Habibie TH, et al. Prevalence and molecular epidemiology of Clostridium difficile infection in Indonesia. New Microbes New Infect. 2017;18:34–37. doi: 10.1016/j.nmni.2017.04.006
  • Thipmontree W, Kiratisin P, Manatsathit S, et al. Epidemiology of suspected Clostridium difficile-associated hospital-acquired diarrhea in hospitalized patients at Siriraj Hospital. J Med Assoc Thai. 2011;94(Suppl 1):S207–S216.
  • Riley TV, Collins DA, Karunakaran R, et al. High prevalence of toxigenic and non-toxigenic Clostridium difficile in Malaysia. J Clin Microbiol. 2018;56(6):e00170–e001718. doi: 10.1128/JCM.00170-18
  • Songer JG, Jones R, Anderson MA, et al. Prevention of porcine Clostridium difficile-associated disease by competitive exclusion with nontoxigenic organisms. Vet Microbiol. 2007;124(3-4):358–361. doi: 10.1016/j.vetmic.2007.04.019
  • Chen YB, Gu SL, Wei ZQ, et al. Molecular epidemiology of Clostridium difficile in a tertiary hospital of China. J Med Microbiol. 2014;63(Pt 4):562–569. doi: 10.1099/jmm.0.068668-0
  • Dingle KE, Elliott B, Robinson E, et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol Evol. 2014;6(1):36–52. doi: 10.1093/gbe/evt204
  • Qin J, Dai Y, Ma X, et al. Nosocomial transmission of Clostridium difficile genotype ST81 in a general teaching hospital in China traced by whole genome sequencing. Sci Rep. 2017;7(1):9627. doi: 10.1038/s41598-017-09878-8
  • Wang X, Cai L, Yu R, et al. ICU-Onset Clostridium difficile infection in a university hospital in China: a prospective cohort study. PLoS One. 2014;9(11):e111735. doi: 10.1371/journal.pone.0111735
  • He M, Sebaihia M, Lawley TD, et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A. 2010;107(16):7527–7532 doi: 10.1073/pnas.0914322107
  • Martin H, Willey B, Low DE, et al. Characterization of Clostridium difficile strains isolated from patients in Ontario, Canada, from 2004 to 2006. J Clin Microbiol. 2008;46(9):2999–3004. doi: 10.1128/JCM.02437-07
  • Dubberke ER, Reske KA, Seiler S, et al. Risk factors for acquisition and loss of Clostridium difficile colonization in hospitalized patients. Antimicrob Agents Chemother. 2015;59(8):4533–4543. doi: 10.1128/AAC.00642-15
  • Lessa FC, Mu Y, Bamberg WM, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(24):2369–2370.
  • Waslawski S, Lo ES, Ewing SA, et al. Clostridium difficile ribotype diversity at six health care institutions in the United States. J Clin Microbiol. 2013;51(6):1938–1941. doi: 10.1128/JCM.00056-13
  • Barbut F, Lalande V, Burghoffer B, et al. Prevalence and genetic characterization of toxin A variant strains of Clostridium difficile among adults and children with diarrhea in France. J Clin Microbiol. 2002;40(6):2079–2083. doi: 10.1128/JCM.40.6.2079-2083.2002
  • Indra A, Schmid D, Huhulescu S, et al. Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey. Wien Klin Wochenschr. 2015;127(15-16):587–593. doi: 10.1007/s00508-015-0808-5
  • Kim H, Jeong SH, Roh KH, et al. Investigation of toxin gene diversity, molecular epidemiology, and antimicrobial resistance of Clostridium difficile isolated from 12 hospitals in South Korea. Korean J Lab Med. 2010;30(5):491–497. doi: 10.3343/kjlm.2010.30.5.491
  • Kim J, Kang JO, Kim H, et al. Epidemiology of Clostridium difficile infections in a tertiary-care hospital in Korea. Clin Microbiol Infect. 2013;19(6):521–527. doi: 10.1111/j.1469-0691.2012.03910.x
  • Kim H, Riley TV, Kim M, et al. Increasing prevalence of toxin A-negative, toxin B-positive isolates of Clostridium difficile in Korea: impact on laboratory diagnosis. J Clin Microbiol. 2008;46(3):1116–1117. doi: 10.1128/JCM.01188-07
  • Huang H, Fang H, Weintraub A, et al. Distinct ribotypes and rates of antimicrobial drug resistance in Clostridium difficile from Shanghai and Stockholm. Clin Microbiol Infect. 2009;15(12):1170–1173. doi: 10.1111/j.1469-0691.2009.02992.x
  • Huang H, Weintraub A, Fang H, et al. Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe. 2010;16(6):633–635. doi: 10.1016/j.anaerobe.2010.09.002
  • Jin D, Luo Y, Huang C, et al. Molecular epidemiology of Clostridium difficile infection in hospitalized patients in Eastern China. J Clin Microbiol. 2017;55(3):801–810. doi: 10.1128/JCM.01898-16
  • Hung YP, Huang IH, Lin HJ, et al. Predominance of Clostridium difficile ribotypes 017 and 078 among toxigenic clinical isolates in Southern Taiwan. PLoS One. 2016;11(11):e0166159. doi: 10.1371/journal.pone.0166159
  • Chen YB, Gu SL, Shen P, et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from hospitals during a 4-year period in China. J Med Microbiol. 2018;67(1):52–59. doi: 10.1099/jmm.0.000646
  • Kullin B, Brock T, Rajabally N, et al. Characterisation of Clostridium difficile strains isolated from Groote Schuur Hospital, Cape Town, South Africa. Eur J Clin Microbiol Infect Dis. 2016;35(10):1709–1718. doi: 10.1007/s10096-016-2717-6
  • Collins DA, Putsathit P, Elliott B, et al. Laboratory-based surveillance of Clostridium difficile strains circulating in the Australian healthcare setting in 2012. Pathology. 2017;49(3):309–313. doi: 10.1016/j.pathol.2016.10.013
  • Eyre DW, Tracey L, Elliott B, et al. Emergence and spread of predominantly community-onset Clostridium difficile PCR ribotype 244 infection in Australia, 2010 to 2012. Euro Surveill. 2015;20(10):21059. doi: 10.2807/1560-7917.ES2015.20.10.21059
  • Knight DR, Giglio S, Huntington PG, et al. Surveillance for antimicrobial resistance in Australian isolates of Clostridium difficile, 2013–14. J Antimicrob Chemother. 2015;70(11):2992–2999. doi: 10.1093/jac/dkv220
  • Foster NF, Collins DA, Ditchburn SL, et al. Epidemiology of Clostridium difficile infection in two tertiary-care hospitals in Perth, Western Australia: a cross-sectional study. New Microbes New Infect. 2014;2(3):64–71. doi: 10.1002/nmi2.43
  • Warny M, Pepin J, Fang A, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366(9491):1079–1084. doi: 10.1016/S0140-6736(05)67420-X
  • Karlowsky JA, Adam HJ, Kosowan T, et al. PCR ribotyping and antimicrobial susceptibility testing of isolates of Clostridium difficile cultured from toxin-positive diarrheal stools of patients receiving medical care in Canadian hospitals: the Canadian Clostridium difficile Surveillance Study (CAN-DIFF) 2013–2015. Diagn Microbiol Infect Dis. 2018;91(2):105–111. doi: 10.1016/j.diagmicrobio.2018.01.017
  • Arvand M, Hauri AM, Zaiss NH, et al. Clostridium difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in Hesse, Germany. Euro Surveill. 2009;14(45). doi: 10.2807/ese.14.45.19403-en
  • Freeman J, Vernon J, Morris K, et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect. 2015;21(3):248.e9–248.e16. doi: 10.1016/j.cmi.2014.09.017
  • Cheong E, Roberts T, Rattanavong S, et al. Clostridium difficile infection in the Lao People’s Democratic Republic: first isolation and review of the literature. BMC Infect Dis. 2017;17(1):635. doi: 10.1186/s12879-017-2737-6
  • Zainul NH, Ma ZF, Besari A, et al. Prevalence of Clostridium difficile infection and colonization in a tertiary hospital and elderly community of North-Eastern Peninsular Malaysia. Epidemiol Infect. 2017;145(14):3012–3019. doi: 10.1017/S0950268817002011
  • Tan XQ, Verrall AJ, Jureen R, et al. The emergence of community-onset Clostridium difficile infection in a tertiary hospital in Singapore: a cause for concern. Int J Antimicrob Agents. 2014;43(1):47–51. doi: 10.1016/j.ijantimicag.2013.09.011
  • Imwattana K, Wangroongsarb P, Riley TV. High prevalence and diversity of tcdA-negative and tcdB-positive, and non-toxigenic, Clostridium difficile in Thailand. Anaerobe. 2019;57:4–10. doi: 10.1016/j.anaerobe.2019.03.008
  • Collins DA, Sohn KM, Wu Y, et al., editors. Clostridium difficile infection in the Asia-Pacific region. 27th European Congress of Clinical Microbiology and Infectious Diseases; 2017; Vienna, Austria.
  • Sato H, Kato H, Koiwai K, et al. A nosocomial outbreak of diarrhea caused by toxin A-negative, toxin B-positive Clostridium difficile in a cancer center hospital. Kansenshogaku Zasshi. 2004;78(4):312–319. doi: 10.11150/kansenshogakuzasshi1970.78.312
  • Wang B, Peng W, Zhang P, et al. The characteristics of Clostridium difficile ST81, a new PCR ribotype of toxin A- B+ strain with high-level fluoroquinolones resistance and higher sporulation ability than ST37/PCR ribotype 017. FEMS Microbiol Lett. 2018;365(17). doi: 10.1093/femsle/fny168
  • Mikamo H, Aoyama N, Sawata M, et al. The effect of bezlotoxumab for prevention of recurrent Clostridium difficile infection (CDI) in Japanese patients. J Infect Chemother. 2018;24(2):123–129. doi: 10.1016/j.jiac.2017.10.005
  • Wangroongsarb P, Kamthalang T, Jittaprasatsin C, et al. Antimicrobial susceptibility and toxin production of Clostridium difficile isolated from diarrheal patients during 2012–2015. J Assoc Med Sci. 2017;50(2):187–196.
  • Chankhamhaengdecha S, Hadpanus P, Aroonnual A, et al. Evaluation of multiplex PCR with enhanced spore germination for detection of Clostridium difficile from stool samples of the hospitalized patients. Biomed Res Int. 2013;2013:875437.
  • Chotiprasitsakul D, Janvilisri T, Kiertiburanakul S, et al. A superior test for diagnosis of Clostridium difficile-associated diarrhea in resource-limited settings. Jpn J Infect Dis. 2012;65(4):326–329. doi: 10.7883/yoken.65.326
  • Isidro J, Santos A, Nunes A, et al. Imipenem resistance in Clostridium difficile ribotype 017, Portugal. Emerg Infect Dis. 2018;24(4):741–745. doi: 10.3201/eid2404.170095
  • Kullin B, Wojno J, Abratt V, et al. Toxin A-negative toxin B-positive ribotype 017 Clostridium difficile is the dominant strain type in patients with diarrhoea attending tuberculosis hospitals in Cape Town, South Africa. Eur J Clin Microbiol Infect Dis. 2017;36(1):163–175. doi: 10.1007/s10096-016-2790-x
  • Rajabally N, Kullin B, Ebrahim K, et al. A comparison of Clostridium difficile diagnostic methods for identification of local strains in a South African centre. J Med Microbiol. 2016;65(4):320–327. doi: 10.1099/jmm.0.000231
  • Legenza L, Barnett S, Rose W, et al. Epidemiology and outcomes of Clostridium difficile infection among hospitalised patients: results of a multicentre retrospective study in South Africa. BMJ Glob Health. 2018;3(4):e000889. doi: 10.1136/bmjgh-2018-000889
  • Bauer MP, Kuijper EJ. Potential sources of Clostridium difficile in human infection. Infect Dis Clin North Am. 2015;29(1):29–35. doi: 10.1016/j.idc.2014.11.010
  • Collins DA, Hawkey PM, Riley TV. Epidemiology of Clostridium difficile infection in Asia. Antimicrob Resist Infect Control. 2013;2(1):21. doi: 10.1186/2047-2994-2-21
  • Cho A, Byun JW, Kim JW, et al. Low prevalence of Clostridium difficile in slaughter pigs in Korea. J Food Prot. 2015;78(5):1034–1036. doi: 10.4315/0362-028X.JFP-14-493
  • Wu Y-C, Chen C-M, Kuo C-J, et al. Prevalence and molecular characterization of Clostridium difficile isolates from a pig slaughterhouse, pork, and humans in Taiwan. Int J Food Microbiol. 2017;242:37–44. doi: 10.1016/j.ijfoodmicro.2016.11.010
  • Rodriguez-Palacios A, Stampfli HR, Duffield T, et al. Clostridium difficile PCR ribotypes in calves, Canada. Emerg Infect Dis. 2006;12(11):1730–1736. doi: 10.3201/eid1211.051581
  • Drigo I, Mazzolini E, Bacchin C, et al. Molecular characterization and antimicrobial susceptibility of Clostridium difficile isolated from rabbits raised for meat production. Vet Microbiol. 2015;181(3–4):303–307. doi: 10.1016/j.vetmic.2015.10.005
  • Putsathit P, Maneerattanaporn M, Piewngam P, et al. Antimicrobial susceptibility of Clostridium difficile isolated in Thailand. Antimicrob Resist Infect Control. 2017;6:58. doi: 10.1186/s13756-017-0214-z
  • Huang H, Weintraub A, Fang H, et al. Antimicrobial resistance in Clostridium difficile. Int J Antimicrob Agents. 2009;34(6):516–522. doi: 10.1016/j.ijantimicag.2009.09.012
  • Chow VCY, Kwong TNY, So EWM, et al. Surveillance of antibiotic resistance among common Clostridium difficile ribotypes in Hong Kong. Sci Rep. 2017;7(1):17218. doi: 10.1038/s41598-017-17523-7
  • Bakker D, Corver J, Harmanus C, et al. Relatedness of human and animal Clostridium difficile PCR ribotype 078 isolates determined on the basis of multilocus variable-number tandem-repeat analysis and tetracycline resistance. J Clin Microbiol. 2010;48(10):3744–3749. doi: 10.1128/JCM.01171-10
  • Dingle KE, Didelot X, Quan TP, et al. A role for tetracycline selection in the evolution of Clostridium difficile PCR-ribotype 078. bioRxiv. 2018;262352.
  • He M, Miyajima F, Roberts P, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45(1):109–113. doi: 10.1038/ng.2478
  • Curry SR, Marsh JW, Shutt KA, et al. High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin Infect Dis. 2009;48(4):425–429. doi: 10.1086/596315