2,391
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Mechanisms underlying the virulence regulation of new Vibrio alginolyticus ncRNA Vvrr1 with a comparative proteomic analysis

, , , , , & show all
Pages 1604-1618 | Received 28 Jun 2019, Accepted 24 Oct 2019, Published online: 12 Nov 2019

References

  • Guo L, Huang L, Su Y, et al. Seca, secD, secF, yajC, and yidC contribute to the adhesion regulation of Vibrio alginolyticus. Microbiologyopen. 2017;7(2):e00551.
  • Newton A, Kendall M, Vugia DJ, et al. Increasing rates of Vibriosis in the United States, 1996-2010: review of surveillance data from 2 systems. Clin Infect Dis. 2012;54(suppl_5):S391–S3S5.
  • Altekruse SF, Bishop RD, Baldy LM, et al. Vibrio gastroenteritis in the US Gulf of Mexico region: the role of raw oysters. Epidemiol Infect. 2000;124(3):489–495.
  • Daniels NA, Mackinnon L, Bishop R, et al. Vibrio parahaemolyticus infections in the United States, 1973-1998. J Infect Dis. 2000;181(5):1661–1666.
  • Horseman MA, Salim S. A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int J Infect Dis. 2011;15(3):e157–ee66.
  • Pickering LK, Georges P, Shulman ST. The red book through the ages. Pediatrics. 2013;132(5):898–906.
  • Dechet AM, Yu PA, Koram N, et al. Nonfoodborne Vibrio infections: an important cause of morbidity and mortality in the United States, 1997–2006. Clin Infect Dis. 2008;46(7):970–976.
  • Scallan E, Griffin PM, Angulo FJ, et al. Foodborne illness acquired in the United States–unspecified agents. Emerg Infect Dis. 2011;17(1):7–15.
  • Morris JG, Black RE. Cholera and other vibrioses in the United States. N Engl J Med. 1985;312(6):343–350.
  • Bakeraustin C, Oliver JD, Alam M, et al. Vibrio spp. infections. Nat Rev Dis Primers. 2018;4(1):8.
  • Jacoslifka KM, Newton AE, Mahon BE. Vibrio alginolyticus infections in the USA, 1988-2012. Epidemiol Infect. 2017;145(7):1491–1499.
  • (Cdc) CFDCaP. Cholera and other Vibrio illness surveillance (COVIS), summary data, 2008–2012. Atlanta (GA): US Department of Health and Human Services; 2014.
  • Liu W, Huang L, Su Y, et al. Contributions of the oligopeptide permeases in multistep of Vibrio alginolyticus pathogenesis. MicrobiologyOpen. 2017;6:5.
  • Huang L, Wang L, Lin X, et al. . mcp, aer, cheB, and cheV contribute to the regulation of Vibrio alginolyticus (ND-01) adhesion under gradients of environmental factors. MicrobiologyOpen. 2017;6(6):e00517.
  • Gu D, Guo M, Yang M, et al. A σE-mediated temperature gauge controls a switch from LuxR-mediated virulence gene expression to thermal stress adaptation in Vibrio alginolyticus. PLoS Pathog. 2016;12(6):e1005645.
  • Wang Q, Liu Q, Ma Y, et al. Luxo controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus. J Appl Microbiol. 2007;103(5):1525–1534.
  • Rui H, Liu Q, Ma Y, et al. Roles of LuxR in regulating extracellular alkaline serine protease A, extracellular polysaccharide and mobility of Vibrio alginolyticus. FEMS Microbiol Lett. 2008;285(2):155–162.
  • Rui H, Liu Q, Wang Q, et al. Role of alkaline serine protease, asp, in vibrio alginolyticus virulence and regulation of its expression by luxO-luxR regulatory system. J Microbiol Biotechnol. 2009;19(5):431–438.
  • Cao X, Wang Q, Liu Q, et al. Vibrio alginolyticus MviN is a LuxO-regulated protein and affects cytotoxicity toward EPC cell. J Micro Biotechnol. 2010;20(2):271–280.
  • Cao X, Wang Q, Liu Q, et al. Identification of a -regulated extracellular protein Pep and its roles in motility in Vibrio alginolyticus. Microb Pathog. 2011;50(2):123–131.
  • Zhao Z, Zhang L, Ren C, et al. Autophagy is induced by the type III secretion system of Vibrio alginolyticus in several mammalian cell lines. Arch Microbiol. 2011;193(1):53–61.
  • Sheng L, Lv Y, Liu Q, et al. Connecting type VI secretion, quorum sensing, and c-di-GMP production in fish pathogen Vibrio alginolyticus through phosphatase PppA. Vet Microbiol. 2013;162(2-4):652–662.
  • Tian Y, Liu Q, Wang Q. Involvement of LuxS in the regulation of motility and Flagella Biogenesis in Vibrio alginolyticus. Bioscience Biotechnology & Biochemistry. 2008;72(4):1063–1071.
  • Liu H, Wang Q, Qin L, et al. Roles of Hfq in the stress adaptation and virulence in fish pathogen Vibrio alginolyticus and its potential application as a target for live attenuated vaccine. Applied Microbiology & Biotechnology. 2011;91(2):353–364.
  • Gu D, Liu H, Yang Z, et al. Chromatin immunoprecipitation sequencing technology reveals global regulatory roles of low cell density quorum-sensing regulator AphA in pathogen Vibrio alginolyticus. J Bacteriol. 2016;198(21):2985–2999.
  • Gao X, Wang X, Mao Q, et al. Vqsa, a novel LysR-type transcriptional regulator, coordinates quorum sensing (QS) and is controlled by QS To regulate virulence in the pathogen Vibrio alginolyticus. Appl Environ Microbiol. 2018;84(12):undefined.
  • Yang Z, Zhou X, Ma Y, et al. Serine/threonine kinase PpkA coordinates the interplay between T6SS2 activation and quorum sensing in the marine pathogen Vibrio alginolyticus. Environ Microbiol. 2018;20(2):903–919.
  • Huang L, Hu J, Su Y, et al. Identification and characterization of three Vibrio alginolyticus non-coding RNAs involved in adhesion, chemotaxis, and motility processes. Front Cell Infect Microbiol. 2015: 5:56.
  • Waters LS, Storz G. Regulatory RNAs in bacteria. Cell. 2009;136(4):615–628.
  • Lu P, Zhang Y, Li L, et al. Small non-coding RNA SraG regulates the operon YPK_1206-1205 in Yersinia pseudotuberculosis. FEMS Microbiol Lett. 2012;331(1):37–43.
  • Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms*. Annu Rev Microbiol. 2004;58(1):303–328.
  • Jonathan L, Hidayat T, Miron L, et al. High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. Plos One. 2008;3(9):e3197.
  • Yuan C, Wu J, Qian L, et al. sRNATarBase: a comprehensive database of bacterial sRNA targets verified by experiments. RNA. 2010;16(11):2051–2057.
  • Gottesman S. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet. 2005;21(7):399–404.
  • Storz G, Altuvia S, Wassarman KM. An abundance of RNA Regulators*. Annu Rev Biochem. 2005;74(1):199–217.
  • Beth M, Tim VO, Jianmin W, et al. Control of virulence by small RNAs in Streptococcus pneumoniae. Plos Pathog. 2012;8(7):e1002788.
  • Jeanette TO, Nataly P, Paul S. The 4.5S RNA component of the signal recognition particle is required for group A Streptococcus virulence. Microbiology. 2010;156(5):1342–1350.
  • Dang H, Lovell CR. Microbial surface Colonization and biofilm development in marine environments. Microbiol Mol Biol Rev. 2016;80(1):91–138.
  • Luo G, Huang L, Su Y, et al. Flra, flrB and flrC regulate adhesion by controlling the expression of critical virulence genes in Vibrio alginolyticus. Emerg Microbes Infect. 2016;5(8):e85.
  • Wang X, Du Y, Hua Y, et al. The EspF N-terminal of enterohemorrhagic Escherichia coli O157: H7 EDL933w imparts stronger toxicity effects on HT-29 cells than the C-terminal.. Frontiers in Cellular & Infection Microbiology. 2017;7:410.
  • Huang L, Liu W, Jiang Q, et al. Integration of transcriptomic and proteomic approaches reveals the temperature-dependent virulence of Pseudomonas plecoglossicida. Front Cell Infect Microbiol. 2018;8:207.
  • Sun Y, Luo G, Zhao L, et al. Integration of RNAi and RNA-seq reveals the Immune responses of to gene of. Front Immunol. 2018;9(undefined):1624.
  • Corcoran CP, Podkaminski D, Papenfort K, et al. Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. Mol Microbiol. 2012;84(3):428–445.
  • Zhang Y, Huang L, Zhao Y, et al. Musk xylene induces malignant transformation of human liver cell line L02 via repressing the TGF-β signaling pathway. Chemosphere. 2017;168:1506–1514.
  • Luo G, Xu X, Zhao L, et al. Clpv is a key virulence gene during in vivo Pseudomonas plecoglossicida infection. J Fish Dis. 2019;42(7):991–1000.
  • Zhang M, Qin Y, Huang L, et al. The role of sodA and sodB in Aeromonas hydrophila resisting oxidative damage to survive in fish macrophages and escape for further infection. Fish Shellfish Immunol. 2019;88(undefined):489–495.
  • Tsou AM, Jun Z. Quorum sensing negatively regulates hemolysin transcriptionally and posttranslationally in Vibrio cholerae. Infect Immun. 2010;78(1):461–467.
  • Huang L, Zuo Y, Jiang Q, et al. A metabolomic investigation into the temperature-dependent virulence of Pseudomonas plecoglossicida from large yellow croaker (Pseudosciaena crocea). J Fish Dis. 2019;42(3):431–446.
  • Chen Q, Yian Q, Shen MA. Progress on pathogenicity research of Vibrio alginolyticus. Marine Sciences. 2006;30:83–89.
  • Yan Q, Chen Q, Ma S, et al. Characteristics of adherence of pathogenic Vibrio alginolyticus to the intestinal mucus of large yellow croaker (Pseudosciaena crocea). Aquaculture. 2007;269(1):21–30.
  • Kong W, Huang L, Su Y, et al. Investigation of possible molecular mechanisms underlying the regulation of adhesion in Vibrio alginolyticus with comparative transcriptome analysis. Antonie Van Leeuwenhoek. 2015;107(5):1197–1206.
  • Huang L, Huang L, Yan Q, et al. The TCA pathway is an important player in the regulatory network governing Vibrio alginolyticus adhesion under adversity. Front Microbiol. 2016;7(e65973):40.
  • Gao J, Tian M, Bao Y, et al. Pyruvate kinase is necessary for Brucella abortus full virulence in BALB/c mouse. Vet Res. 2016;47(1):87.
  • Peng F, Widmann S, Wünsche A, et al. Effects of beneficial mutations in pykF gene vary over time and across replicate populations in a long-term experiment with bacteria. Mol Biol Evol. 2018;35(1):202–210.
  • Hofmann J, Heider C, Wei L, et al. Recombinant production of Yersinia enterocolitica pyruvate kinase isoenzymes PykA and PykF. Protein Expr Purif. 2013;88(2):243–247.
  • Yu H, Rao X, Zhang K. Nucleoside diphosphate kinase (Ndk): a pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiol Res. 2017;205:125–134.
  • Yu H, Xiong J, Zhang R, et al. Ndk, a novel host-responsive regulator, negatively regulates bacterial virulence through quorum sensing in Pseudomonas aeruginosa. Sci Rep. 2016;6(1):28684.
  • Spira B, Ferreira GM, De Almeida LG. Rela enhances the adherence of enteropathogenic Escherichia coli. Plos One. 2014;9(3):e91703.
  • Zhang M, Yan Q, Mao L, et al. Katg plays an important role in Aeromonas hydrophila survival in fish macrophages and escape for further infection. Gene. 2018;672:156–164.
  • Al-Maleki AR, Mariappan V, Vellasamy KM, et al. Altered proteome of Burkholderia pseudomallei colony variants induced by exposure to human Lung Epithelial cells. Plos One. 2015;10(5):2015.
  • Vastano V, Pagano A, Fusco A, et al. The Lactobacillus plantarum Eno A1 enolase is involved in Immunostimulation of Caco-2 cells and in biofilm development. Adv Exp Med Biol. 2015;897:33–44.
  • De Backer S, Sabirova J, De Pauw I, et al. Enzymes Catalyzing the TCA-and Urea cycle influence the matrix composition of Biofilms Formed by Methicillin-Resistant Staphylococcus aureus USA300. Microorganisms. 2018;6(4):113.
  • Tapia NC, Besten HMWD, Abee T. Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface. Int J Food Microbiol. 2018;273:20–27.
  • Koomen J, Besten HMWD, Metselaar KI, et al. Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of Listeria monocytogenes variants. Int J Food Microbiol. 2018;283:14–21.
  • Longo F, Motta S, Mauri P, et al. Interplay of the modified nucleotide phosphoadenosine 5′-phosphosulfate (PAPS) with global regulatory proteins in Escherichia coli: modulation of cyclic AMP (cAMP)-dependent gene expression and interaction with the HupA regulatory protein. Chem Biol Interact. 2016;259:39–47.