3,666
Views
21
CrossRef citations to date
0
Altmetric
Articles

Increased temperatures reduce the vectorial capacity of Aedes mosquitoes for Zika virus

ORCID Icon, , , , , , ORCID Icon, & show all
Pages 67-77 | Received 13 Jul 2019, Accepted 14 Oct 2019, Published online: 02 Jan 2020

References

  • Azar SR, Roundy CM, Rossi SL, et al. Differential vector competency of Aedes albopictus populations from the Americas for Zika virus. Am J Trop Med Hyg. 2017;97(2):330–339. doi: 10.4269/ajtmh.16-0969
  • Liu Y, Liu J, Du S, et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature [Internet]. 2017;545(May):482–486. Available from: http://dx.doi.org/10.1038/nature22365
  • Boyer S, Calvez E, Chouin-Carneiro T, et al. An overview of mosquito vectors of Zika virus. Microbes Infect. 2018;20:1–15. doi: 10.1016/j.micinf.2018.01.006
  • Bogoch II, Brady OJ, Kraemer MUG, et al. Anticipating the international spread of Zika virus from Brazil. Lancet. 2016;387(10016):335–336. doi: 10.1016/S0140-6736(16)00080-5
  • Hennessey M, Ficher M, Staples JE. Zika virus spreads to new areas—region of the Americas, May 2015–January 2016. Morb Mortal Wkly Rep. 2016;65(3):55–58. doi: 10.15585/mmwr.mm6503e1
  • Petersen E, Wilson ME, Touch S, et al. Rapid spread of Zika virus in the Americas – implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. Int J Infect Dis. 2016;44(May):11–15. doi: 10.1016/j.ijid.2016.02.001
  • Ciota A, Bialosuknia S, Zink S, et al. Effects of Zika virus strain and Aedes mosquito species on vector competence. Emerg Infect Dis. 2017;23(7):1110–1117. doi: 10.3201/eid2307.161633
  • Vose RS, Easterling DR, Kunkel KE, et al. Temperature changes in the United States. In: Wuebbles D, Fahey D, Hibbard K, et al., editors. Climate science special report: fourth national climate assessment. Washington (DC): U.S. Global Change Research Program; 2017. p. 185–206.
  • Romero-Lankao P, Smith J, Davidson D, et al. Climate change 2014: impacts, adaptation and vulnerability. In: Barros V, Field D, Dokken M, et al., editors. Regional aspects contribution of working group ii to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press; 2014. p. 1439–1498.
  • Pachauri R. Avoiding dangerous climate change. In: Schellnhuber H, Cramer W, Nakicenovic N, et al., editors. Avoiding dangerous climate change. 1st ed. New York: Cambridge University Press; 2006. p. 3–6.
  • IPCC, et al. Summary for policymakers. In: Solomon S, Manning Q, Chen Z, et al., editors. Climate change 2007: the physical science basis contribution of working group i to the fourth assessment report of the Intergovernmental Panel on Climate Change. 1st ed. New York: Cambridge University Press; 2007. p. 1–18.
  • Epstein PR. Is global warming harmful to health? Sci Am. 2000;283:50–57. doi: 10.1038/scientificamerican0800-50
  • Lafferty KD. The ecology of climate change and infectious diseases. Ecology. 2009;90(4):888–900. doi: 10.1890/08-0079.1
  • Ciota A, Matacchiero A, Kilpatrick AM, et al. The effect of temperature on life history traits of Culex mosquitoes. J Med Entomol. 2014;51(1):55–62. doi: 10.1603/ME13003
  • Huey B. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool. 1979;19:357–366. doi: 10.1093/icb/19.1.357
  • McKechnie A, Wolf B. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol Lett. 2010;6(September):253–256. doi: 10.1098/rsbl.2009.0702
  • Murdock C, Krijn P, Bell A, et al. Complex effects of temperature on mosquito immune function. Proc R Soc B Biol Sci. 2012;279(May):3357–3366. doi: 10.1098/rspb.2012.0638
  • Adelman ZN, Anderson MAE, Wiley MR, et al. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl Trop Dis. 2013;7(5):1–8. doi: 10.1371/journal.pntd.0002239
  • Mordecai EA, Cohen JM, Evans MV, et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl Trop Dis. 2017;11(4):e0005568. doi: 10.1371/journal.pntd.0005568
  • Delatte H, Gimonneau G, Triboire A, et al. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol. 2009;46(1):33–41. doi: 10.1603/033.046.0105
  • Liu-Helmersson J, Stenlund H, Wilder-Smith A, et al. Vectorial capacity of Aedes aegypti: effects of temperature and Implications for global dengue epidemic potential. PLoS One. 2014;9(3):e89783. doi: 10.1371/journal.pone.0089783
  • Mordecai EA, Paaijmans KP, Johnson LR, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett. 2013;16:22–30. doi: 10.1111/ele.12015
  • Kilpatrick AM, Meola MA, Moudy RM, et al. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog. 2008;4(6):e1000092. doi: 10.1371/journal.ppat.1000092
  • Tesla B, Demakovsky LR, Mordecai EA, et al. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc R Soc B Biol Sci. 2018;285(1884):1–9. doi: 10.1098/rspb.2018.0795
  • Gloria-Soria A, Armstrong P, Powell J, et al. Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype. Proc R Soc B. 2017;284:20171506. doi: 10.1098/rspb.2017.1506
  • Weger-Lucarelli J, Rückert C, Chotiwan N, et al. Vector competence of American mosquitoes for three strains of Zika virus. PLoS Negl Trop Dis. 2016;10(10):e0005101. doi: 10.1371/journal.pntd.0005101
  • Muttis E, Balsalobre A, Chuchuy A, et al. Factors related to Aedes aegypti (Diptera: Culicidae) populations and temperature determine differences on life-history traits with regional implications in disease transmission. J Med Entomol. 2018;20(April):1–8.
  • Chouin-carneiro T, Vega-rua A, Vazeille M, et al. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis. 2016;10(3):e0004543. doi: 10.1371/journal.pntd.0004543
  • Tramonte AR, Christofferson RC. Investigating the probability of establishment of Zika virus and detection through mosquito surveillance under different temperature conditions. PLoS Negl Trop Dis. 2019;14(3):1–14.
  • IPCC. Third assessment report. Cambridge, UK; 2007.
  • Lanciotti RS, Calisher CH, Gubler DJ, et al. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30(3):545–551.
  • Black WI, Moore CG. Population biology as a tool for studying vector-borne diseases. Beaty BJ, Marquards WC, editors. Niwot: University Press of Colorado; 1996. p. 393–416.
  • Macdonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957. 77 p.
  • Ciota A, Ehrbar D, Matacchiero A, et al. The evolution of virulence of West Nile virus in a mosquito vector: implications for arbovirus adaptation and evolution. BMC Evol Biol. 2013;13(71):1–12.
  • Scott T, Clark G, Lorenz L, et al. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique. J Med Entomol. 1993;30(1):94–99. doi: 10.1093/jmedent/30.1.94
  • Scott TW, Amerasinghe PH, Morrison AC, et al. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol. 2000;37(1):89–101. doi: 10.1603/0022-2585-37.1.89
  • Yasuno M, Tonn RJ. A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bull World Heal Organ. 1970;43(2):319–325.
  • Brady OJ, Johansson MA, Guerra CA, et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors. 2013;6(351):1–12.
  • Liles J. Effects of mating or association of the sexes on longevity in Aedes aegypti. Mosq News. 1965;25(4):434–439.
  • Liles J, Delong D. The longevity and productivity of adult male and female Aedes aegypti when reared separately and together on three different diets. Ann Entomol Soc Am. 1960;53(2):277–280. doi: 10.1093/aesa/53.2.277
  • Villarreal SM, Pitcher S, Helinski MEH, et al. Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. J Insect Physiol [Internet]. 2018;108(August):1–9. Available from: https://doi.org/10.1016/j.jinsphys.2018.05.001
  • Xiao F, Zhang Y, Yan-Qin D, et al. The effect of temperature on the extrinsic incubation period and infection rate of dengue virus serotype 2 infection in Aedes albopictus. Arch Virol. 2014;159:3053–3057. doi: 10.1007/s00705-014-2051-1
  • Christofferson RC, Chisenhall DM, Wearing HJ, et al. Chikungunya viral fitness measures within the vector and subsequent transmission potential. PLoS One. 2014;9(10):e110538. doi: 10.1371/journal.pone.0110538
  • Johansson MA, Arana-vizcarrondo N, Biggerstaff BJ, et al. Incubation periods of yellow fever virus. Am J Trop Med Hyg. 2010;83(1):183–188. doi: 10.4269/ajtmh.2010.09-0782
  • Turell MJ. Effect of environmental temperature on the vector competence of Aedes taeniorhynchus for rift valley fever and equine encephalitis viruses. Am J Trop Med Hyg. 1993;49(6):672–676. doi: 10.4269/ajtmh.1993.49.672
  • Kay BH, Jennings C. Enhancement or modulation of the vector competence of Ochlerotatus vigilax (Diptera: Culicidae) for Ross River virus by temperature. J Med Entomol. 2002;39(1):99–105. doi: 10.1603/0022-2585-39.1.99
  • Westbrook CJ, Reiskind MH, Pesko KN, et al. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus. Vector Borne Zoonotic Dis. 2010;10(3):241–247. doi: 10.1089/vbz.2009.0035
  • Lambrechts L, Paaijmans KP, Fansiri T, et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A. 2011;108(18):7460–7465. doi: 10.1073/pnas.1101377108
  • Carrington LB, Armijos MV, Lambrechts L, et al. Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Negl Trop Dis. 2013;7(4):e2190. doi: 10.1371/journal.pntd.0002190
  • Watts DM, Burke DS, Harrison BA, et al. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg. 1987;36(1):143–152. doi: 10.4269/ajtmh.1987.36.143
  • Rohani A, Wong YC, Zamre I, et al. The effect of extrinsic incubation temperature on development of dengue serotype 2 and 4 viruses in Aedes aegypti (L.). Southeast Asian J Trop Med Public Health. 2009;40(5):942–950.
  • Gardner LM, Chen N, Sarkar S. Global risk of Zika virus depends critically on vector status of Aedes albopictus. Lancet Infect Dis. 2016;16(5):522–523. doi: 10.1016/S1473-3099(16)00176-6
  • Ciota AT, Chin PA, Ehrbar DJ, et al. Differential effects of temperature and mosquito genetics determine transmissibility of arboviruses by Aedes aegypti in Argentina. Am J Trop Med Hyg. 2018;99(2):417–424. doi: 10.4269/ajtmh.18-0097
  • Failloux AB, Vazeille M, Rodhain F. Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. J Mol Evol. 2002;55(6):653–663. doi: 10.1007/s00239-002-2360-y
  • Lambrechts L, Chevillon C, Albright RG, et al. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol. 2009;9(1):160. doi: 10.1186/1471-2148-9-160
  • Ciota AT, Styer LM, Meola MA, et al. The costs of infection and resistance as determinants of West Nile virus susceptibility in Culex mosquitoes. BMC Ecol. 2011;11(23):1–8.