1,975
Views
5
CrossRef citations to date
0
Altmetric
Non-Neutralizing Protective Antibodies

Contribution of Fc-dependent cell-mediated activity of a vestigial esterase-targeting antibody against H5N6 virus infection

, ORCID Icon, , , , , , & show all
Pages 95-110 | Received 05 Jul 2019, Accepted 17 Dec 2019, Published online: 06 Jan 2020

References

  • Duan L, Campitelli L, Fan X, et al. Characterization of low-pathogenic H5 subtype influenza viruses from Eurasia: implications for the origin of highly pathogenic H5N1 viruses. J Virol. 2007;81(14):7529–7539. doi: 10.1128/JVI.00327-07
  • Li KS, Guan Y, Wang J, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in Eastern Asia. Nature. 2004 Jul 8;430(6996):209–213. doi: 10.1038/nature02746
  • Donis RO, Smith GJ, Perdue ML, et al. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerging Infect Dis. 2008 Jul;14(7):e1. doi: 10.3201/eid1407.071681
  • Gu M, Liu W, Cao Y, et al. Novel reassortant highly pathogenic avian influenza (H5N5) viruses in domestic ducks, China. Emerging Infect Dis. 2011 Jun;17(6):1060–1063. doi: 10.3201/eid/1706.101406
  • Wu H, Peng X, Xu L, et al. Novel reassortant influenza A(H5N8) viruses in domestic ducks, eastern China. Emerging Infect Dis. 2014 Aug;20(8):1315–1318. doi: 10.3201/eid2008.140339
  • Zhao G, Gu X, Lu X, et al. Novel reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China. PLoS One. 2012;7(9):e46183. doi: 10.1371/journal.pone.0046183
  • World Health Organization. Influenza at the human-animal interface. Monthly Risk Assessment Summary. 2014.
  • de Vries E, Guo H, Dai M, et al. Rapid emergence of highly pathogenic avian influenza subtypes from a subtype H5N1 Hemagglutinin variant. Emerging Infect Dis. 2015 May;21(5):842–846. doi: 10.3201/eid2105.141927
  • OIE W. Update on highly pathogenic avian influenza in animals (type H5 and H7). 2017.
  • Hall JS, Dusek RJ, Spackman EJEid. Rapidly expanding range of highly pathogenic avian influenza viruses. Emerg Infect Dis. 2015;21(7):1251. doi: 10.3201/eid2107.150403
  • Verhagen JH, Herfst S, Fouchier RAJS. How a virus travels the world. Science. 2015;347(6222):616–617. doi: 10.1126/science.aaa6724
  • Jhung MA, Nelson DI. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds—United States, December 2014–January 2015. 2015.
  • Pan M, Gao R, Lv Q, et al. Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: Virological and clinical findings. J Infect. 2016 Jan;72(1):52–59. doi: 10.1016/j.jinf.2015.06.009
  • Yuan R, Wang Z, Kang Y, et al. Continuing reassortant of H5N6 subtype highly pathogenic avian influenza virus in Guangdong. Front Microbiol. 2016;7:520.
  • Bi Y, Liu H, Xiong C, et al. Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014. Sci Rep. 2016;6:29888. doi: 10.1038/srep29888
  • Xu W, Li X, Bai T, et al. A fatal case of infection with a further reassortant, highly pathogenic avian influenza (HPAI) H5N6 virus in Yunnan, China. Infect Genet Evol. 2016;40:63–66. doi: 10.1016/j.meegid.2016.02.020
  • Shen Y-Y, Ke C-W, Li Q, et al. Novel reassortant avian influenza A (H5N6) viruses in humans, Guangdong, China, 2015. Emerg Infect Dis. 2016;22(8):1507–1509. doi: 10.3201/eid2208.160146
  • Zhang Z, Li R, Jiang L, et al. The complexity of human infected AIV H5N6 isolated from China. BMC Infect Dis. 2016;16(1):600. doi: 10.1186/s12879-016-1932-1
  • Bi Y, Chen Q, Wang Q, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe. 2016;20(6):810–821. doi: 10.1016/j.chom.2016.10.022
  • Du Y, Chen M, Yang J, et al. Molecular evolution and emergence of H5N6 avian influenza virus in Central China. J Virol. 2017;91(12):e00143-17. doi: 10.1128/JVI.00143-17
  • Krammer F, Palese PJ. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol. 2013;3(5):521–530. doi: 10.1016/j.coviro.2013.07.007
  • Ekiert DC, Wilson IAJ. Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Curr Opin Virol. 2012;2(2):134–141. doi: 10.1016/j.coviro.2012.02.005
  • Mullarkey CE, Bailey MJ, Golubeva DA, et al. Broadly neutralizing hemagglutinin stalk-specific antibodies induce potent phagocytosis of immune complexes by neutrophils in an Fc-dependent manner. MBio. 2016;7(5):e01624-16. doi: 10.1128/mBio.01624-16
  • Krammer F. The human antibody response to influenza A virus infection and vaccination. Nat Rev Immunol. 2019;19:383–397. doi: 10.1038/s41577-019-0143-6
  • DiLillo DJ, Tan GS, Palese P, et al. Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat Med. 2014;20(2):143. doi: 10.1038/nm.3443
  • Burton DR. Antibodies, viruses and vaccines. Nat Rev Immunol. 2002 Sep;2(9):706–713. doi: 10.1038/nri891
  • Wines BD, Powell MS, Parren PWHI, et al. The IgG Fc Contains Distinct Fc receptor (FcR) binding Sites: The Leukocyte receptors FcγRI and FcγRIIa bind to a region in the Fc Distinct from that Recognized by Neonatal FcR and protein A. J Immunol. 2000;164(10):5313–5318. doi: 10.4049/jimmunol.164.10.5313
  • Hezareh M, Hessell AJ, Jensen RC, et al. Effector function Activities of a Panel of mutants of a broadly Neutralizing antibody against human Immunodeficiency virus type 1. J Virol. 2001;75(24):12161–12168. doi: 10.1128/JVI.75.24.12161-12168.2001
  • Hessell AJ, Hangartner L, Hunter M, et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature. 2007 Sep 6;449(7158):101–104. doi: 10.1038/nature06106
  • Strohl WR. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol. 2009/12/01/;20(6):685–691. doi: 10.1016/j.copbio.2009.10.011
  • Shields RL, Namenuk AK, Hong K, et al. High Resolution Mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and Design of IgG1 Variants with Improved binding to the FcγR. 2001 March 2, 2001%J. J Biol Chem. 2001;276(9):6591–6604. doi: 10.1074/jbc.M009483200
  • Morgan A, Jones ND, Nesbitt AM, et al. The N-terminal end of the CH2 domain of chimeric human IgG1 anti-HLA-DR is necessary for C1q, Fc gamma RI and Fc gamma RIII binding. Immunology. 1995 Oct;86(2):319–324.
  • Corti D, Voss J, Gamblin SJ, et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 2011 Aug 12;333(6044):850–856. doi: 10.1126/science.1205669
  • Bangaru S, Zhang H, Gilchuk IM, et al. A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Nat Commun. 2018;9(1):2669. doi: 10.1038/s41467-018-04704-9
  • Ren H, Wang G, Wang S, et al. Cross-protection of newly emerging HPAI H5 viruses by neutralizing human monoclonal antibodies: A viable alternative to oseltamivir. mAbs. 2016 Aug-Sep;8(6):1156–1166. doi: 10.1080/19420862.2016.1183083
  • Tan GS, Leon PE, Albrecht RA, et al. Broadly-reactive neutralizing and non-neutralizing antibodies directed against the H7 influenza virus hemagglutinin reveal divergent mechanisms of protection. PLoS Pathog. 2016;12(4):e1005578. doi: 10.1371/journal.ppat.1005578
  • Chai N, Swem LR, Park S, et al. A broadly protective therapeutic antibody against influenza B virus with two mechanisms of action. Nat Commun. 2017;8:14234. doi: 10.1038/ncomms14234
  • Oh HL, Akerstrom S, Shen S, et al. An antibody against a novel and conserved epitope in the hemagglutinin 1 subunit neutralizes numerous H5N1 influenza viruses. J Virol. 2010 Aug;84(16):8275–8286. doi: 10.1128/JVI.02593-09
  • Zheng Z, Paul S, Mo X, et al. The vestigial esterase domain of haemagglutinin of H5N1 avian influenza A virus: Antigenicity and Contribution to viral pathogenesis. Vaccines (Basel). 2018;6(3):53. doi: 10.3390/vaccines6030053
  • Wang S, Ren H, Jiang W, et al. Divergent requirement of Fc-Fcγ receptor interactions for in vivo protection against influenza viruses by two pan-H5 hemagglutinin antibodies. J Virol. 2017;91(11):e02065-16. doi: 10.1128/JVI.02065-16
  • He W, Chen C-J, Mullarkey CE, et al. Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice. Nat Commun. 2017;8(1):846. doi: 10.1038/s41467-017-00928-3
  • Laidlaw BJ, Decman V, Ali M-AA, et al. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity. PLoS Pathog. 2013;9(3):e1003207. doi: 10.1371/journal.ppat.1003207
  • Yu Z, Gao X, Wang T, et al. Fatal H5N6 avian influenza virus infection in a Domestic Cat and wild birds in China. Sci Rep. 2015 Jun 2;5:10704. doi: 10.1038/srep10704
  • Leyva-Grado VH, Tan GS, Leon PE, et al. Direct administration in the respiratory tract improves efficacy of broadly neutralizing anti-influenza virus monoclonal antibodies. Antimicrob Agents Chemother. 2015;59(7):4162–4172. doi: 10.1128/AAC.00290-15
  • Paul SS, Mok CK, Mak TM, et al. A cross-clade H5N1 influenza A virus neutralizing monoclonal antibody binds to a novel epitope within the vestigial esterase domain of hemagglutinin. Antiviral Res. 2017 Aug;144:299–310. doi: 10.1016/j.antiviral.2017.06.012
  • Aweya JJ, Sze CW, Bayega A, et al. NS5B induces up-regulation of the BH3-only protein, BIK, essential for the hepatitis C virus RNA replication and viral release. Virology. 2015 Jan 1;474:41–51. doi: 10.1016/j.virol.2014.10.027
  • Hai R, Krammer F, Tan GS, et al. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J Virol. 2012 May;86(10):5774–5781. doi: 10.1128/JVI.00137-12
  • Krammer F, Pica N, Hai R, et al. Hemagglutinin stalk-reactive antibodies Are Boosted following Sequential infection with Seasonal and pandemic H1N1 influenza virus in mice. J Virol. 2012 Oct;86(19):10302–10307. doi: 10.1128/JVI.01336-12
  • Pica N, Hai R, Krammer F, et al. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2573–2578. doi: 10.1073/pnas.1200039109
  • Zhou F, Wang G, Buchy P, et al. A triclade DNA vaccine designed on the basis of a comprehensive serologic study elicits neutralizing antibody responses against all clades and subclades of highly pathogenic avian influenza H5N1 viruses. J Virol. 2012 Jun;86(12):6970–6978. doi: 10.1128/JVI.06930-11
  • Schyns J, Bureau F, Marichal T. Lung interstitial macrophages: past, present, and future. 2018;2018.
  • Mak TM, Hanson BJ, Tan YJ. Chimerization and characterization of a monoclonal antibody with potent neutralizing activity across multiple influenza A H5N1 clades. Antiviral Res. 2014 Jul;107:76–83. doi: 10.1016/j.antiviral.2014.04.011
  • Thommesen JE, Michaelsen TE, Løset GÅ, et al. Lysine 322 in the human IgG3 CH2 domain is crucial for antibody dependent complement activation. Mol Immunol. 2000;37(16):995–1004. doi: 10.1016/S0161-5890(01)00010-4
  • Diebolder CA, Beurskens FJ, de Jong RN, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014 Mar 14;343(6176):1260–1263. doi: 10.1126/science.1248943
  • He F, Kumar SR, Khader SMS, et al. Effective intranasal therapeutics and prophylactics with monoclonal antibody against lethal infection of H7N7 influenza virus. Antiviral Res. 2013;100(1):207–214. doi: 10.1016/j.antiviral.2013.08.003
  • Ye J, Shao H, Hickman D, et al. Intranasal delivery of an IgA monoclonal antibody effective against sublethal H5N1 influenza virus infection in mice. Clin Vaccine Immunol. 2010;17(9):1363–1370. doi: 10.1128/CVI.00002-10
  • Rinaldi C, Penhale WJ, Stumbles PA, et al. Modulation of innate immune responses by influenza-specific ovine polyclonal antibodies used for prophylaxis. PloS one. 2014;9(2):e89674. doi: 10.1371/journal.pone.0089674
  • Laursen NS, Friesen RH, Zhu X, et al. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science. 2018;362(6414):598–602. doi: 10.1126/science.aaq0620
  • Limberis MP, Adam VS, Wong G, et al. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza. Sci Transl Med. 2013;5(187):187ra72-187ra72. doi: 10.1126/scitranslmed.3006299
  • Pollara J, Tay MZ, Wiehe K. Antibody-dependent cellular phagocytosis in antiviral immune responses. Front Immunol. 2019;10:332. doi: 10.3389/fimmu.2019.00332