1,970
Views
17
CrossRef citations to date
0
Altmetric
Articles

Modulation of lethal HPAIV H5N8 clade 2.3.4.4B infection in AIV pre-exposed mallards

, , ORCID Icon, , , , , , , ORCID Icon & show all
Pages 180-193 | Received 16 Aug 2019, Accepted 24 Dec 2019, Published online: 23 Jan 2020

References

  • Lee D-H, Bertran K, Kwon J-H, et al. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J Vet Sci. 2017;18:269–280. doi: 10.4142/jvs.2017.18.S1.269
  • Zhong L, Zhao Q, Zhao K, et al. The antigenic drift molecular basis of the H5N1 influenza viruses in a novel branch of clade 2.3.4. Vet Microbiol. 2014;171:23–30. doi: 10.1016/j.vetmic.2014.02.033
  • Harder T, Maurer-Stroh S, Pohlmann A, et al. Influenza A(H5N8) virus similar to strain in Korea causing highly pathogenic avian influenza in Germany. Emerg Infect Dis. 2015;21:860–863. doi: 10.3201/eid2105.141897
  • Verhagen JH, Herfst S, Fouchier RAM. Infectious disease. How a virus travels the world. Science. 2015;347:616–617. doi: 10.1126/science.aaa6724
  • Pohlmann A, Starick E, Harder T, et al. Outbreaks among wild birds and domestic poultry caused by reassorted influenza A(H5N8) clade 2.3.4.4 viruses, Germany, 2016. Emerg Infect Dis. 2017;23:633–636. doi: 10.3201/eid2304.161949
  • Globig A, Starick E, Homeier T, et al. Epidemiological and molecular analysis of an outbreak of highly pathogenic avian influenza H5N8 clade 2.3.4.4 in a German Zoo: effective disease control with minimal culling. Transbound Emerg Dis. 2017;64:1813–1824. doi: 10.1111/tbed.12570
  • Krone O, Globig A, Ulrich R, et al. White-tailed sea eagle (Haliaeetus albicilla) die-off due to infection with highly pathogenic avian influenza virus, subtype H5N8, in Germany. Viruses. 2018;10:478. doi: 10.3390/v10090478
  • Pohlmann A, Starick E, Grund C, et al. Swarm incursions of reassortants of highly pathogenic avian influenza virus strains H5N8 and H5N5, clade 2.3.4.4b, Germany, winter 2016/17. Sci Rep. 2018;8:15. doi: 10.1038/s41598-017-16936-8
  • van den Brand JMA, Verhagen JH, Veldhuis Kroeze EJB, et al. Wild ducks excrete highly pathogenic avian influenza virus H5N8 (2014-2015) without clinical or pathological evidence of disease. Emerg Microbes Infect. 2018;7:67. doi: 10.1038/s41426-018-0070-9
  • Pantin-Jackwood MJ, Costa-Hurtado M, Shepherd E, et al. Swayne DE: pathogenicity and transmission of H5 and H7 highly pathogenic avian influenza viruses in mallards. J Virol. 2016;90:9967–9982. doi: 10.1128/JVI.01165-16
  • Spackman E, Prosser DJ, Pantin-Jackwood MJ, et al. The pathogenesis of clade 2.3.4.4 H5 highly pathogenic avian influenza viruses in ruddy duck(oxyura jamaicensis) and lesser scaup (aythya affinis). J Wildl Dis. 2017;53:832–842. doi: 10.7589/2017-01-003
  • Grund C, Hoffmann D, Ulrich R, et al. A novel European H5N8 influenza A virus has increased virulence in ducks but low zoonotic potential. Emerg Microbes Infect. 2018;7:132. doi: 10.1038/s41426-018-0130-1
  • Kleyheeg E, Slaterus R, Bodewes R, et al. Deaths among wild birds during highly pathogenic avian influenza A(H5N8) virus outbreak, the Netherlands. Emerg Infect Dis. 2017;23:2050–2054. doi: 10.3201/eid2312.171086
  • Phuong DQ, Dung NT, Jørgensen PH, et al. Susceptibility of Muscovy (Cairina Moschata) and mallard ducks (Anas Platyrhynchos) to experimental infections by different genotypes of H5N1 avian influenza viruses. Vet Microbiol. 2011;148:168–174. doi: 10.1016/j.vetmic.2010.09.007
  • Kang H-M, Lee E-K, Song B-M, et al. Experimental infection of mandarin duck with highly pathogenic avian influenza A (H5N8 and H5N1) viruses. Vet Microbiol. 2017;198:59–63. doi: 10.1016/j.vetmic.2016.12.005
  • Kang H-M, Lee E-K, Song B-M, et al. Novel reassortant influenza A(H5N8) viruses among inoculated domestic and wild ducks, South Korea, 2014. Emerg Infect Dis. 2015;21:298–304. doi: 10.3201/eid2102.141268
  • Kwon H-I, Kim E-H, Kim Y-I, et al. Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016–2017 winter season. Emerg Microbes Infect. 2018;7:29. doi: 10.1038/s41426-018-0029-x
  • Olsen B, Munster VJ, Wallensten A, et al. Global patterns of influenza a virus in wild birds. Science. 2006;312:384–388. doi: 10.1126/science.1122438
  • Knight-Jones TJD, Hauser R, Matthes D, et al. Evaluation of effectiveness and efficiency of wild bird surveillance for avian influenza. Vet Res. 2010;41:50. doi: 10.1051/vetres/2010023
  • Globig A, Baumer A, Revilla-Fernández S, et al. Ducks as sentinels for avian influenza in wild birds. Emerg Infect Dis. 2009;15:1633–1636. doi: 10.3201/eid1510.090439
  • Hoffmann B, Hoffmann D, Henritzi D, et al. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses. Sci Rep. 2016;6:27211. doi: 10.1038/srep27211
  • Commission decision of 4 August 2006 approving a Diagnostic Manual for avian influenza as provided for in Council Directive 2005/94/EC.
  • Graaf A, Ulrich R, Maksimov P, et al. A viral race for primacy: co-infection of a natural pair of low and highly pathogenic H7N7 avian influenza viruses in chickens and embryonated chicken eggs. Emerg Microbes Infect. 2018;7:204. doi: 10.1038/s41426-018-0204-0
  • Hirschberger J. Herstellung und Charakterisierung monoklonaler Antikörper gegen T-Lymphozyten des Huhnes [Dissertation Gießen]; 1987.
  • Spackman E, Senne DA, Myers TJ, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:3256–3260. doi: 10.1128/JCM.40.9.3256-3260.2002
  • Henritzi D, Hoffmann B, Wacheck S, et al. A newly developed tetraplex real-time RT-PCR for simultaneous screening of influenza virus types A, B, C and D. Influenza Other Respir Viruses. 2019;13:71–82. doi: 10.1111/irv.12613
  • Slomka MJ, Pavlidis T, Banks J, et al. Validated H5 Eurasian real-time reverse transcriptase-polymerase chain reaction and its application in H5N1 outbreaks in 2005-2006. Avian Dis. 2007;51:373–377. doi: 10.1637/7664-060906R1.1
  • Animal & Plant Health Agency. Annual Report on surveillance for avian influenza in poultry and wild birds in Member States of the European Union in 2017. European Commission; 2018.
  • Slomka MJ, Puranik A, Mahmood S, et al. Ducks are susceptible to infection with a range of doses of H5N8 highly pathogenic avian influenza virus (2016, clade 2.3.4.4b) and are largely resistant to virus-specific mortality, but efficiently transmit infection to contact Turkeys. Avian Dis. 2019;63:172–180. doi: 10.1637/11905-052518-Reg.1
  • Berhane Y, Leith M, Embury-Hyatt C, et al. Studying possible cross-protection of Canada geese preexposed to North American low pathogenicity avian influenza virus strains (H3N8, H4N6, and H5N2) against an H5N1 highly pathogenic avian influenza challenge. Avian Dis. 2010;54:548–554. doi: 10.1637/8841-040309-Reg.1
  • Fereidouni SR, Starick E, Beer M, et al. Highly pathogenic avian influenza virus infection of mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses. PLoS One. 2009;4:e6706. doi: 10.1371/journal.pone.0006706
  • Costa TP, Brown JD, Howerth EW, et al. Homo- and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa). PLoS One. 2011;6:e15987. doi: 10.1371/journal.pone.0015987
  • Costa TP, Brown JD, Howerth EW, et al. Effect of a prior exposure to a low pathogenic avian influenza virus in the outcome of a heterosubtypic low pathogenic avian influenza infection in mallards (Anas platyrhynchos). Avian Dis. 2010;54:1286–1291. doi: 10.1637/9480-072210-Reg.1
  • Spivey TJ, Lindberg MS, Meixell BW, et al. Maintenance of influenza A viruses and antibody response in mallards (Anas platyrhynchos) sampled during the non-breeding season in Alaska. PLoS One. 2017;12:e0183505. doi: 10.1371/journal.pone.0183505
  • Fereidouni SR, Grund C, Häuslaigner R, et al. Dynamics of specific antibody responses induced in mallards after infection by or immunization with low pathogenicity avian influenza viruses. Avian Dis. 2010;54:79–85. doi: 10.1637/9005-073109-Reg.1
  • Latorre-Margalef N, Grosbois V, Wahlgren J, et al. Heterosubtypic immunity to influenza A virus infections in mallards may explain existence of multiple virus subtypes. PLoS Pathog. 2013;9:e1003443. doi: 10.1371/journal.ppat.1003443
  • Globig A, Fereidouni SR, Harder TC, et al. Consecutive natural influenza a virus infections in sentinel mallards in the evident absence of subtype-specific hemagglutination inhibiting antibodies. Transbound Emerg Dis. 2013;60:395–402. doi: 10.1111/j.1865-1682.2012.01357.x
  • Dirsmith KL, Jeffrey Root J, Bentler KT, et al. Persistence of maternal antibodies to influenza A virus among captive mallards (Anas platyrhynchos). Arch Virol. 2018;163:3235–3242. doi: 10.1007/s00705-018-3978-4
  • Kleyheeg E, van Dijk JGB, Tsopoglou-Gkina D, et al. Movement patterns of a keystone waterbird species are highly predictable from landscape configuration. Mov Ecol. 2017;5:2. doi: 10.1186/s40462-016-0092-7
  • Shin J-H, Lee K-S, Kim S-H, et al. Tracking mallards (Anas platyrhynchos) with GPS satellite transmitters along their migration route through Northeast Asia. Avian Dis. 2016;60:311–315. doi: 10.1637/11096-042015-Reg
  • Bengtsson D, Safi K, Avril A, et al. Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host? R Soc Open Sci. 2016;3:150633. doi: 10.1098/rsos.150633
  • Bengtsson D, Avril A, Gunnarsson G, et al. Movements, home-range size and habitat selection of mallards during autumn migration. PLoS One. 2014;9:e100764. doi: 10.1371/journal.pone.0100764
  • Hénaux V. Samuel MD: avian influenza shedding patterns in waterfowl: implications for surveillance, environmental transmission, and disease spread. J Wildl Dis. 2011;47:566–578. doi: 10.7589/0090-3558-47.3.566
  • van Dijk JG, Verhagen JH, Wille M, et al. Host and virus ecology as determinants of influenza A virus transmission in wild birds. Curr Opin Virol. 2018;28:26–36. doi: 10.1016/j.coviro.2017.10.006
  • The Global Consortium for H5N8 and Related Influenza Viruses. Role for migratory wild birds in the global spread of avian influenza H5N8. Science. 2016;354:213–217. doi: 10.1126/science.aaf8852