2,014
Views
9
CrossRef citations to date
0
Altmetric
Articles

Identification of pyrvinium pamoate as an anti-tuberculosis agent in vitro and in vivo by SOSA approach amongst known drugs

, , , , , , & show all
Pages 302-312 | Received 31 Oct 2019, Accepted 19 Jan 2020, Published online: 04 Feb 2020

References

  • Daniel TM. The history of tuberculosis. Respir Med. 2006;100(11):1862–1870. doi: 10.1016/j.rmed.2006.08.006
  • Global tuberculosis report. Geneva: World Health Organization; 2019.
  • Pezzella AT. History of pulmonary tuberculosis. Thorac Surg Clin. 2019;29(1):1–17. doi: 10.1016/j.thorsurg.2018.09.002
  • Sukhithasri V, Vinod V, Varma S, et al. Mycobacterium tuberculosis treatment modalities and recent insights. Curr Drug Deliv. 2014;11(6):744–752. doi: 10.2174/1567201811666140619121728
  • Wermuth CG. Selective optimization of side activities: another way for drug discovery. J Med Chem. 2004;47(6):1303–1314. doi: 10.1021/jm030480f
  • Wermuth CG. Selective optimization of side activities: the SOSA approach. Drug Discov Today. 2006;11(3–4):160–164. doi: 10.1016/S1359-6446(05)03686-X
  • Gastaminza P, Whitten-Bauer C, Chisari FV. Unbiased probing of the entire hepatitis C virus life cycle identifies clinical compounds that target multiple aspects of the infection. Proc Natl Acad Sci U S A. 2010;107(1):291–296. doi: 10.1073/pnas.0912966107
  • Imperi F, Massai F, Ramachandran Pillai C, et al. New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother. 2013;57(2):996–1005. doi: 10.1128/AAC.01952-12
  • Lamontagne J, Mills C, Mao R, et al. Screening and identification of compounds with antiviral activity against hepatitis B virus using a safe compound library and novel real-time immune-absorbance PCR-based high throughput system. Antiviral Res. 2013;98(1):19–26. doi: 10.1016/j.antiviral.2013.02.001
  • van Cleef KW, Overheul GJ, Thomassen MC, et al. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication. Antiviral Res. 2013;99(2):165–171. doi: 10.1016/j.antiviral.2013.05.011
  • Weisman JL, Liou AP, Shelat AA, et al. Searching for new antimalarial therapeutics amongst known drugs. Chem Biol Drug Des. 2006;67(6):409–416. doi: 10.1111/j.1747-0285.2006.00391.x
  • Tang XL, Yuan CH, Ding Q, et al. Selection and identification of specific glycoproteins and glycan biomarkers of macrophages involved in Mycobacterium tuberculosis infection. Tuberculosis (Edinb. 2017;104:95–106. doi: 10.1016/j.tube.2017.03.010
  • Deng JH, Chen HY, Huang C, et al. Accumulation of EBI3 induced by virulent Mycobacterium tuberculosis inhibits apoptosis in murine macrophages. Pathog Dis. 2019;77(1):ftz007. doi: 10.1093/femspd/ftz007
  • An L, Liu R, Tang W, et al. Screening and identification of inhibitors against influenza A virus from a US drug collection of 1280 drugs. Antiviral Res. 2014;109:54–63. doi: 10.1016/j.antiviral.2014.06.007
  • Mekonnen A, Merker M, Collins JM, et al. Molecular epidemiology and drug resistance patterns of Mycobacterium tuberculosis complex isolates from university students and the local community in Eastern Ethiopia. PLoS One. 2018;13(9):e0198054. doi: 10.1371/journal.pone.0198054
  • Kumar S, Mehra R, Sharma S, et al. Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis. Tuberculosis (Edinb. 2018;108:56–63. doi: 10.1016/j.tube.2017.10.008
  • Gupta R, Wells CD, Hittel N, et al. Delamanid in the treatment of multidrug-resistant tuberculosis. International Journal of Tuberculosis and Lung Disease. 2016;20(12):S33–S37. doi: 10.5588/ijtld.16.0125
  • AlMatar M, AlMandeal H, Var I, et al. New drugs for the treatment of Mycobacterium tuberculosis infection. Biomed Pharmacother. 2017;91:546–558. doi: 10.1016/j.biopha.2017.04.105
  • Salinger DH, Subramoney V, Everitt D, et al. Population Pharmacokinetics of the Antituberculosis agent pretomanid. Antimicrob Agents Chemother. 2019;63(10):e00907-19. doi: 10.1128/AAC.00907-19
  • Falzon D, Zellweger JP, Migliori GB, et al. Drug resistance and tuberculosis elimination in low-incidence countries. Eur Respir J. 2014;44(6):1408–1411. doi: 10.1183/09031936.00138014
  • Hsu JT, Yeh JY, Lin TJ, et al. Identification of BPR3P0128 as an inhibitor of cap-snatching activities of influenza virus. Antimicrob Agents Chemother. 2012;56(2):647–657. doi: 10.1128/AAC.00125-11
  • Mao L, Wang J, DeGrado WF, et al. An assay suitable for high throughput screening of anti-influenza drugs. PLoS One. 2013;8(1):e54070. doi: 10.1371/journal.pone.0054070
  • Maroto M, Fernandez Y, Ortin J, et al. Development of an HTS assay for the search of anti-influenza agents targeting the interaction of viral RNA with the NS1 protein. J Biomol Screen. 2008;13(7):581–590. doi: 10.1177/1087057108318754
  • Altaf M, Miller CH, Bellows DS, et al. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Tuberculosis (Edinb. 2010;90(6):333–337. doi: 10.1016/j.tube.2010.09.002
  • Lougheed KE, Taylor DL, Osborne SA, et al. New anti-tuberculosis agents amongst known drugs. Tuberculosis (Edinb. 2009;89(5):364–370. doi: 10.1016/j.tube.2009.07.002
  • Ishii I, Harada Y, Kasahara T. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. Front Oncol. 2012;2:137. doi: 10.3389/fonc.2012.00137
  • Smith TC, Kinkel AW, Gryczko CM, et al. Absorption of pyrvinium pamoate. Clin Pharmacol Ther. 1976;19(6):802–806. doi: 10.1002/cpt1976196802
  • Xu W, Lacerda L, Debeb BG, et al. The antihelmintic drug pyrvinium pamoate targets aggressive breast cancer. PLoS One. 2013;8(8):e71508. doi: 10.1371/journal.pone.0071508
  • Simm C, May RC. Zinc and Iron Homeostasis: target-Based drug screening as New Route for Antifungal drug development. Front Cell Infect Microbiol. 2019;9:181. doi:10.3389/fcimb.2019.00181.
  • Tomitsuka E, Kita K, Esumi H. An anticancer agent, pyrvinium pamoate inhibits the NADH-fumarate reductase system–a unique mitochondrial energy metabolism in tumour microenvironments. J Biochem. 2012;152(2):171–183. doi: 10.1093/jb/mvs041
  • Tomitsuka E, Kita K, Esumi H. The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann N Y Acad Sci. 2010;1201:44–49. doi: 10.1111/j.1749-6632.2010.05620.x
  • Li T, Feng J, Xiao S, et al. Identification of FDA-approved drugs with activity against Stationary Phase Bartonella henselae. Antibiotics (Basel). 2019;8(2):50. doi: 10.3390/antibiotics8020050
  • Shen L, Niu J, Wang C, et al. High-Throughput screening and Identification of Potent broad-spectrum inhibitors of coronaviruses. J Virol. 2019;93(12):e00023-19. doi: 10.1128/JVI.00023-19
  • Wiegering A, Uthe FW, Huttenrauch M, et al. The impact of pyrvinium pamoate on colon cancer cell viability. Int J Colorectal Dis. 2014;29(10):1189–1198. doi: 10.1007/s00384-014-1975-y
  • Esumi H, Lu J, Kurashima Y, et al. Antitumor activity of pyrvinium pamoate, 6-(dimethylamino)-2-[2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-1-methyl-qu inolinium pamoate salt, showing preferential cytotoxicity during glucose starvation. Cancer Sci. 2004;95(8):685–690. doi: 10.1111/j.1349-7006.2004.tb03330.x
  • Xu L, Zhang L, Hu C, et al. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells. Int J Oncol. 2016;48(3):1175–1186. doi: 10.3892/ijo.2016.3337
  • Thorne CA, Hanson AJ, Schneider J, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat Chem Biol. 2010;6(11):829–836. doi: 10.1038/nchembio.453
  • Lei B, Wei CJ, Tu SC. Action mechanism of antitubercular isoniazid. Activation by Mycobacterium tuberculosis KatG, isolation, and characterization of inha inhibitor. J Biol Chem. 2000;275(4):2520–2526. doi: 10.1074/jbc.275.4.2520
  • Xu M, Zhou YN, Goldstein BP, et al. Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J Bacteriol. 2005;187(8):2783–2792. doi: 10.1128/JB.187.8.2783-2792.2005