1,639
Views
7
CrossRef citations to date
0
Altmetric
Articles

Vector competence of anthropophilic mosquitoes for a new mesonivirus in Senegal

, , , , , , , , , , , , & show all
Pages 496-504 | Received 12 Dec 2019, Accepted 12 Feb 2020, Published online: 28 Feb 2020

References

  • Nga PT, del Carmen Parquet M, Lauber C, et al. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog. 2011;7(9): e1002215. doi: 10.1371/journal.ppat.1002215
  • Zirkel F, Kurth A, Quan P-L, et al. An insect nidovirus emerging from a primary tropical rainforest. MBio. 2011;2(3):e00077–11.
  • Lauber C, Ziebuhr J, Junglen S, et al. Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. Arch Virol. 2012;157(8):1623–1628.
  • Zirkel F, Roth H, Kurth A, et al. Identification and characterization of genetically divergent members of the newly established family Mesoniviridae. J Virol. 2013;87(11):6346–6358.
  • Warrilow D, Watterson D, Hall RA, et al. A new species of mesonivirus from the Northern Territory, Australia. PLoS One. 2014;9(3):e91103.
  • Vasilakis N, Guzman H, Firth C, et al. Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range. Virol J. 2014;11(1):1.
  • Moureau G, Ninove L, Izri A, et al. Flavivirus RNA in phlebotomine sandflies. Vector-Borne and Zoonotic Dis. 2010;10(2):195–197.
  • Calisher CH, Higgs S. The discovery of arthropod-specific viruses in hematophagous arthropods: an open door to understanding the mechanisms of arbovirus and arthropod evolution? Annu Rev Entomol. 2018;63:87–103.
  • Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6(10):741–751.
  • Bolling BG, Olea-Popelka FJ, Eisen L, et al. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology. 2012;427(2):90–97.
  • Kent RJ, Crabtree MB, Miller BR. Transmission of West Nile virus by Culex quinquefasciatus say infected with Culex Flavivirus Izabal. PLoS Negl Trop Dis. 2010;4(5):e671.
  • Kenney JL, Solberg OD, Langevin SA, et al. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol. 2014;95(12):2796–2808.
  • Burivong P, Pattanakitsakul S-N, Thongrungkiat S, et al. Markedly reduced severity of Dengue virus infection in mosquito cell cultures persistently infected with Aedes albopictus densovirus (AalDNV). Virology. 2004;329(2):261–269.
  • Mosimann ALP, Bordignon J, Mazzarotto GCA, et al. Genetic and biological characterization of a densovirus isolate that affects dengue virus infection. Memórias do Instituto Oswaldo Cruz. 2011;106(3):285–292.
  • Hobson-Peters J, Yam AWY, Lu JWF, et al. A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells. PLoS One. 2013;8(2):e56534.
  • Diagne MM, Gaye A, Ndione MHD, et al. Dianke virus: a new mesonivirus species isolated from mosquitoes in Eastern Senegal. Virus Res. 2019; 197802. doi: 10.1016/j.virusres.2019.197802
  • Rutledge L, Ward R, Gould D. Studies on the feeding response of mosquitoes to nutritive solutions in a new membrane feeder. Mosq News. 1964;24(4):407–409.
  • Diallo M, Ba Y, Faye O, et al. Vector competence of Aedes aegypti populations from Senegal for sylvatic and epidemic dengue 2 virus isolated in West Africa. Trans R Soc Trop Med Hyg. 2008;102(5):493–498.
  • de Lara Pinto AZ, de Carvalho MS, de Melo FL, et al. Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado, Midwestern Brazil. PLoS One. 2017;12(11): e0187429. doi: 10.1371/journal.pone.0187429
  • Hougard JM, Mbentengam R, Lochouarn L, et al. Lutte contre Culex quinquefasciatus par Bacillus sphaericus: résultats d'une campagne pilote dans une grande agglomération urbaine d'Afrique équatoriale. Bull World Health Organ. 1993;71(3-4):367.
  • Roy M, Pramanik S, Chatterjee S, et al. Observations on the pupal productivity of Culex tritaeniorhynchus in rice fields of West Bengal, India: implications for vector management (Diptera: Culicidae). Fragm Entomol. 2016;48(1):69–76.
  • Ndiaye el H, Fall G, Gaye A, et al. Vector competence of Aedes vexans (Meigen). Culex poicilipes (Theobald) and Cx. quinquefasciatus say from Senegal for West and East African lineages of Rift Valley fever virus. Parasit Vectors. 2016;9(94). doi: 10.1186/s13071-016-1383-y
  • Rosen L. The natural history of Japanese encephalitis virus. Annual Reviews in Microbiology. 1986;40(1):395–414.
  • Kim N-H, Lee W-G, Shin E-H, et al. Prediction forecast for Culex tritaeniorhynchus populations in Korea. Osong Public Health Res Perspect. 2014;5(3):131–137.
  • Okech BA, Gouagna LC, Knols BG, et al. Influence of indoor microclimate and diet on survival of Anopheles gambiae ss (Diptera: Culicidae) in village house conditions in western Kenya. Int J Trop Insect Sci. 2004;24(3):207–212.
  • Cheng G, Liu Y, Wang P, et al. Mosquito defense strategies against viral infection. Trends Parasitol. 2016;32(3):177–186.
  • Williams M, Woodall J, Corbet PS, et al. O'nyong-nyong fever: An epidemic virus disease in East Africa VIII. Virus isolations from anopheles mosquitoes. Trans R Soc Trop Med Hyg. 1965;59(3):300–306.
  • Vanlandingham DL, Tsetsarkin K, Klingler KA, et al. Determinants of vector specificity of o’nyong nyong and chikungunya viruses in Anopheles and Aedes mosquitoes. Am J Trop Med Hyg. 2006;74(4):663–669.
  • Scott TW, Chow E, Strickman D, et al. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol. 1993;30(5):922–927.
  • Jansen CC, Webb CE, Graham GC, et al. Blood sources of mosquitoes collected from urban and peri-urban environments in eastern Australia with species-specific molecular analysis of avian blood meals. Am J Trop Med Hyg. 2009;81(5):849–857.
  • Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti-a review. Memórias do Instituto Oswaldo Cruz. 2013;108:11–17.
  • Gaye A, Wang E, Vasilakis N, et al. Potential for sylvatic and urban Aedes mosquitoes from Senegal to transmit the new emerging dengue serotypes 1, 3 and 4 in West Africa. PLoS Negl Trop Dis. 2019;13(2): e0007043.
  • Jentes ES, Poumerol G, Gershman MD, et al. The revised global yellow fever risk map and recommendations for vaccination, 2010: consensus of the Informal WHO Working Group on Geographic Risk for Yellow Fever. Lancet Infect Dis. 2011;11(8):622–632.
  • Benelli G, Romano D. Mosquito vectors of Zika virus. Entomologia Generalis. 2017;36(4):309–318.
  • Leparc-Goffart I, Nougairede A, Cassadou S, et al. Chikungunya in the Americas. Lancet. 2014: 383(9916):514.
  • Miller B, Monath T, Tabachnick W, et al. Epidemic yellow fever caused by an incompetent mosquito vector. Trop Med Parasitol. 1989;40(4):396–399.
  • Junglen S, Korries M, Grasse W, et al. Host range restriction of insect-specific Flaviviruses occurs at several levels of the viral life cycle. mSphere. 2017;2. doi: 10.1128/mSphere.00375-16
  • Marklewitz M, Zirkel F, Kurth A, et al. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family. Proc Natl Acad Sci U S A. 2015;112(24):7536–7541.
  • Tree MO, McKellar DR, Kieft KJ, et al. Insect-specific flavivirus infection is restricted by innate immunity in the vertebrate host. Virology. 2016;497:81–91.
  • Öhlund P, Lundén H, Blomström A-L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes. 2019;55(2):127–137.
  • Wei W, Shao D, Huang X, et al. The pathogenicity of mosquito densovirus (C6/36DNV) and its interaction with dengue virus type II in Aedes albopictus. Am J Trop Med Hyg. 2006;75(6):1118–1126.
  • Lutomiah JJ, Mwandawiro C, Magambo J, et al. Infection and vertical transmission of Kamiti river virus in laboratory bred Aedes aegypti mosquitoes. Journal of Insect Science. 2007;7(1):55.
  • Saiyasombat R, Bolling BG, Brault AC, et al. Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J Med Entomol. 2011;48(5):1031–1038.
  • Hall-Mendelin S, McLean BJ, Bielefeldt-Ohmann H, et al. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasit Vectors. 2016;9(1):414.
  • Vasilakis N, Forrester NL, Palacios G, et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J Virol. 2013;87(5):2475–2488.
  • Nasar F, Haddow AD, Tesh RB, et al. Eilat virus displays a narrow mosquito vector range. Parasit Vectors. 2014;7(1):595.
  • Fujita R, Kato F, Kobayashi D, et al. Persistent viruses in mosquito cultured cell line suppress multiplication of flaviviruses. Heliyon. 2018;4(8):e00736.
  • Guzman H. Contreras-Gutierrez MA, da Rosa APT. et al. Characterization of three new insect-specific flaviviruses: their relationship to the mosquito-borne flavivirus pathogens. Am J Trop Med Hyg. 2018;98(2):410–419.
  • Parry R, Asgari S. Aedes anphevirus: an insect-specific virus distributed worldwide in Aedes aegypti mosquitoes that has complex interplays with Wolbachia and dengue virus infection in cells. J Virol. 2018;92(17):e00224–18.
  • Zhang G, Asad S, Khromykh AA, et al. Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines. Sci Rep. 2017;7(1):1–8.