1,660
Views
14
CrossRef citations to date
0
Altmetric
Articles

Impact of the gonococcal FC428 penA allele 60.001 on ceftriaxone resistance and biological fitness

, , , ORCID Icon &
Pages 1219-1229 | Received 23 Mar 2020, Accepted 19 May 2020, Published online: 04 Jun 2020

References

  • Unemo M, Lahra MM, Cole M, et al. World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts. Sex Health. 2019 Sep;16(5):412–425. doi: 10.1071/SH19023
  • Edwards JL, Apicella MA. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev. 2004 Oct;17(4):965–981. doi: 10.1128/CMR.17.4.965-981.2004
  • Farley TA, Cohen DA, Elkins W. Asymptomatic sexually transmitted diseases: the case for screening. Prev Med. 2003 Apr;36(4):502–509. doi: 10.1016/S0091-7435(02)00058-0
  • Hook EW, Bernstein K. Kissing, saliva exchange, and transmission of Neisseria gonorrhoeae. Lancet Infect Dis. 2019 Oct;19(10):e367–e369. doi: 10.1016/S1473-3099(19)30306-8
  • Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014 Jul;27(3):587–613. doi: 10.1128/CMR.00010-14
  • Fifer H, Cole M, Hughes G, et al. Sustained transmission of high-level azithromycin-resistant Neisseria gonorrhoeae in England: an observational study. Lancet Infect Dis. 2018 May;18(5):573–581. doi: 10.1016/S1473-3099(18)30122-1
  • Katz AR, Komeya AY, Kirkcaldy RD, et al. Cluster of Neisseria gonorrhoeae isolates with high-level azithromycin resistance and decreased ceftriaxone susceptibility, Hawaii, 2016. Clin Infect Dis. 2017 Sep 15;65(6):918–923. doi: 10.1093/cid/cix485
  • Yan J, Xue J, Chen Y, et al. Increasing prevalence of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone and resistance to azithromycin in Hangzhou, China (2015-17). J Antimicrob Chemother. 2019 Oct 16;74(1):29–37.
  • Kong FYS, Horner P, Unemo M, et al. Pharmacokinetic considerations regarding the treatment of bacterial sexually transmitted infections with azithromycin: a review. J Antimicrob Chemother. 2019 May 1;74(5):1157–1166. doi: 10.1093/jac/dky548
  • Ison CA, Town K, Obi C, et al. Decreased susceptibility to cephalosporins among gonococci: data from the gonococcal resistance to Antimicrobials Surveillance Programme (GRASP) in England and Wales, 2007-2011. Lancet Infect Dis. 2013 Sep;13(9):762–768. doi: 10.1016/S1473-3099(13)70143-9
  • Shimuta K, Watanabe Y, Nakayama S, et al. Emergence and evolution of internationally disseminated cephalosporin-resistant Neisseria gonorrhoeae clones from 1995 to 2005 in Japan. BMC Infect Dis. 2015 Sep 17;15:378. doi: 10.1186/s12879-015-1110-x
  • Yin YP, Han Y, Dai XQ, et al. Susceptibility of Neisseria gonorrhoeae to azithromycin and ceftriaxone in China: A retrospective study of national surveillance data from 2013 to 2016. PLoS Med. 2018 Feb;15(2):e1002499. doi: 10.1371/journal.pmed.1002499
  • Chen MY, Stevens K, Tideman R, et al. Failure of 500 mg of ceftriaxone to eradicate pharyngeal gonorrhoea, Australia. J Antimicrob Chemother. 2013 Jun;68(6):1445–1447. doi: 10.1093/jac/dkt017
  • Poncin T, Fouere S, Braille A, et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill. 2018 May;23(21):1800264. doi: 10.2807/1560-7917.ES.2018.23.21.1800264
  • Tapsall J, Read P, Carmody C, et al. Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoea verified by molecular microbiological methods. J Med Microbiol. 2009 May;58(Pt 5):683–687. doi: 10.1099/jmm.0.007641-0
  • Unemo M, Golparian D, Hestner A. Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010. Euro Surveill. 2011 Feb 10;16(6):19792.
  • Unemo M, Golparian D, Nicholas R, et al. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother. 2012 Mar;56(3):1273–1280. doi: 10.1128/AAC.05760-11
  • Unemo M, Golparian D, Potocnik M, et al. Treatment failure of pharyngeal gonorrhoea with internationally recommended first-line ceftriaxone verified in Slovenia, September 2011. Euro Surveill. 2012 Jun 21;17(25):20200.
  • Camara J, Serra J, Ayats J, et al. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrob Chemother. 2012 Aug;67(8):1858–1860. doi: 10.1093/jac/dks162
  • Deguchi T, Yasuda M, Hatazaki K, et al. New clinical strain of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone, Japan. Emerg Infect Dis. 2016 Jan;22(1):142–144. doi: 10.3201/eid2201.150868
  • Lahra MM, Ryder N, Whiley DM. A new multidrug-resistant strain of Neisseria gonorrhoeae in Australia. N Engl J Med. 2014 Nov 6;371(19):1850–1851. doi: 10.1056/NEJMc1408109
  • Ohnishi M, Golparian D, Shimuta K, et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother. 2011 Jul;55(7):3538–3545. doi: 10.1128/AAC.00325-11
  • Nakayama S, Shimuta K, Furubayashi K, et al. New ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan. Antimicrob Agents Chemother. 2016 Jul;60(7):4339–4341. doi: 10.1128/AAC.00504-16
  • Lee K, Nakayama SI, Osawa K, et al. Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates. J Antimicrob Chemother. 2019 Jul 1;74(7):1812–1819. doi: 10.1093/jac/dkz129
  • Chen SC, Han Y, Yuan LF, et al. Identification of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, China. Emerg Infect Dis. 2019 Jul;25(7):1427–1429. doi: 10.3201/eid2507.190172
  • Yang F, Zhang H, Chen Y, et al. Detection and analysis of two cases of the internationally spreading ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in China. J Antimicrob Chemother. 2019 Dec 1;74(12):3635–3636. doi: 10.1093/jac/dkz384
  • Yuan Q, Li Y, Xiu L, et al. Identification of multidrug-resistant Neisseria gonorrhoeae isolates with combined resistance to both ceftriaxone and azithromycin, China, 2017-2018. Emerg Microbes Infect. 2019;8(1):1546–1549. doi: 10.1080/22221751.2019.1681242
  • Terkelsen D, Tolstrup J, Johnsen CH, et al. Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Euro Surveill. 2017 Oct;22(42):1700659. doi: 10.2807/1560-7917.ES.2017.22.42.17-00659
  • Lefebvre B, Martin I, Demczuk W, et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017. Emerg Infect Dis. 2018 Feb;24(2):381–383. doi: 10.3201/eid2402.171756
  • Lahra MM, Martin I, Demczuk W, et al. Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg Infect Dis. 2018 Apr;24(4):735–740. doi: 10.3201/eid2404.171873
  • Golparian D, Rose L, Lynam A, et al. Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. Euro Surveill. 2018 Nov;23(47):1800617. doi: 10.2807/1560-7917.ES.2018.23.47.1800617
  • Eyre DW, Town K, Street T, et al. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Euro Surveill. 2019 Mar;24(10):1900147. doi: 10.2807/1560-7917.ES.2019.24.10.1900147
  • Eyre DW, Sanderson ND, Lord E, et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill. 2018 Jul;23(27):1800323. doi: 10.2807/1560-7917.ES.2018.23.27.1800323
  • Chen SC, van der Veen S, Yin YP. Widespread transmission of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in China. Submitted.
  • Yan J, Chen Y, Yang F, et al. High incidence of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in Hangzhou, China. Submitted.
  • Tomberg J, Unemo M, Ohnishi M, et al. Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041. Antimicrob Agents Chemother. 2013 Jul;57(7):3029–3036. doi: 10.1128/AAC.00093-13
  • Singh A, Tomberg J, Nicholas RA, et al. Recognition of the beta-lactam carboxylate triggers acylation of Neisseria gonorrhoeae penicillin-binding protein 2. J Biol Chem. 2019 Sep 20;294(38):14020–14032. doi: 10.1074/jbc.RA119.009942
  • Tomberg J, Unemo M, Davies C, et al. Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry. 2010 Sep 21;49(37):8062–8070. doi: 10.1021/bi101167x
  • Vincent LR, Kerr SR, Tan Y, et al. In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. MBio. 2018 Apr 3;9(2):e01905-17. doi: 10.1128/mBio.01905-17
  • Zhang J, van der Veen S. Neisseria gonorrhoeae 23S rRNA A2059G mutation is the only determinant necessary for high-level azithromycin resistance and improves in vivo biological fitness. J Antimicrob Chemother. 2019 Feb 1;74(2):407–415. doi: 10.1093/jac/dky438
  • Wang S, Xue J, Lu P, et al. Gonococcal MtrE and its surface-expressed Loop 2 are immunogenic and elicit bactericidal antibodies. J Infect. 2018 Sep;77(3):191–204. doi: 10.1016/j.jinf.2018.06.001
  • Wang Z, Wang X, Lu P, et al. Identification and characterization of the Neisseria gonorrhoeae MscS-like mechanosensitive channel. Infect Immun. 2018 Jun;86(6):e00090-18. doi: 10.1128/IAI.00090-18
  • Jerse AE, Sharma ND, Simms AN, et al. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun. 2003 Oct;71(10):5576–5582. doi: 10.1128/IAI.71.10.5576-5582.2003
  • Ito M, Deguchi T, Mizutani KS, et al. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in Central Japan. Antimicrob Agents Chemother. 2005 Jan;49(1):137–143. doi: 10.1128/AAC.49.1.137-143.2005
  • Lee H, Suh YH, Lee S, et al. Emergence and spread of cephalosporin-resistant Neisseria gonorrhoeae with mosaic penA alleles, South Korea, 2012-2017. Emerg Infect Dis. 2019 Mar;25(3):416–424. doi: 10.3201/eid2503.181503
  • Andersson DI, Levin BR. The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999 Oct;2(5):489–493. doi: 10.1016/S1369-5274(99)00005-3
  • Nilsson AI, Zorzet A, Kanth A, et al. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc Natl Acad Sci U S A. 2006 May 2;103(18):6976–6981. doi: 10.1073/pnas.0602171103
  • Tomberg J, Fedarovich A, Vincent LR, et al. Alanine 501 mutations in penicillin-binding protein 2 from Neisseria gonorrhoeae: structure, mechanism, and effects on cephalosporin resistance and biological fitness. Biochemistry. 2017 Feb 28;56(8):1140–1150. doi: 10.1021/acs.biochem.6b01030
  • Warner DM, Folster JP, Shafer WM, et al. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J Infect Dis. 2007 Dec 15;196(12):1804–1812. doi: 10.1086/522964
  • Warner DM, Shafer WM, Jerse AE. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol. 2008 Oct;70(2):462–478. doi: 10.1111/j.1365-2958.2008.06424.x