2,452
Views
25
CrossRef citations to date
0
Altmetric
Articles

Backtracking and forward checking of human listeriosis clusters identified a multiclonal outbreak linked to Listeria monocytogenes in meat products of a single producer

ORCID Icon, ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 1600-1608 | Received 21 Apr 2020, Accepted 12 Jun 2020, Published online: 12 Jul 2020

References

  • EFSA, ECDC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018;16(12):e05500.
  • Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microbes Infect. 2007;9(10):1236–1243.
  • COMMISSION REGULATION (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs; 2005.
  • Allerberger F, Wagner M. Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect. 2010;16(1):16–23.
  • Robert Koch-Institute. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2017; 2018.
  • Robert Koch-Institute. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2011; 2012.
  • Robert Koch-Institute. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2018; 2019.
  • ECDC. The European Union one health 2018 zoonoses report; 2019.
  • Kwong JC, Mercoulia K, Tomita T, et al. Prospective whole-genome sequencing enhances national surveillance of Listeria monocytogenes. J Clin Microbiol. 2016;54(2):333–342.
  • Moura A, Criscuolo A, Pouseele H, et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol. 2017;2:16185.
  • Jackson BR, Tarr C, Strain E, et al. Implementation of nationwide real-time whole-genome sequencing to enhance listeriosis outbreak detection and investigation. Clin Infect Dis. 2016;63(3):380–386.
  • Pietzka A, Allerberger F, Murer A, et al. Whole genome sequencing based surveillance of L. monocytogenes for early detection and investigations of listeriosis outbreaks [review]. Front Public Health. 2019;7(139).
  • Kleta S, Hammerl JA, Dieckmann R, et al. Molecular tracing to find source of protracted invasive listeriosis outbreak, Southern Germany, 2012–2016. Emerging Infectious Dis J. 2017;23(10):1680.
  • Gwida M, Lüth S, El-Ashker M, et al. Contamination pathways can be traced along the poultry processing chain by whole genome sequencing of Listeria innocua. Microorganisms. 2020;8(3):414.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120.
  • Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477.
  • Ruppitsch W, Pietzka A, Prior K, et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J Clin Microbiol. 2015;53(9):2869–2876.
  • Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–W259.
  • Seemann T. Snippy - Rapid haploid variant calling and core genome alignment; 2015 [25 January 2019]. Available from: https://github.com/tseemann/snippy
  • Seemann T. abricate - Mass screening of contigs for antimicrobial and virulence genes; 2018 [09 August 2019]. Available from: https://github.com/tseemann/abricate
  • Liu B, Zheng D, Jin Q, et al. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47(D1):D687–d692.
  • NCBI. NCBI’s AMR reference database 2019. Available from: https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/.
  • Roedel A, Dieckmann R, Brendebach H, et al. Biocide tolerant Listeria monocytogenes isolates from German food production plants do not show cross-resistance to clinically relevant antibiotics. Appl Environ Microbiol. 2019;85(20):AEM.01253-19.
  • Romanova NA, Wolffs PFG, Brovko LY, et al. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol. 2006;72(5):3498–3503.
  • To MS, Favrin S, Romanova N, et al. Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes. Appl Environ Microbiol. 2002;68(11):5258–5264.
  • Clayton EM, Daly KM, Guinane CM, et al. Atypical Listeria innocua strains possess an intact LIPI-3. BMC Microbiol. 2014;14:58.
  • Elhanafi D, Dutta V, Kathariou S. Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998–1999 outbreak. Appl Environ Microbiol. 2010;76(24):8231–8238.
  • Halbedel S, Prager R, Fuchs S, et al. Whole genome sequencing of recent Listeria monocytogenes isolates from Germany reveals population structure and disease clusters. J Clin Microbiol. 2018;56(6):00119-18.
  • Robert Koch-Institute. Epidemiologisches Bulletin, Nr.41; 2019.
  • Robert Koch-Institute. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2016; 2017.
  • Robert Koch-Institute. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2015; 2016.
  • Robert Koch-Institute. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2014; 2015.
  • EFSA Panel on Biological Hazards, Ricci A, Allende A, et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018;16(1):e05134.
  • Maury MM, Tsai YH, Charlier C, et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet. 2016;48(3):308–313.
  • Milohanic E, Jonquieres R, Cossart P, et al. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol Microbiol. 2001;39(5):1212–1224.
  • Kirchner M, Higgins DE. Inhibition of ROCK activity allows InlF-mediated invasion and increased virulence of Listeria monocytogenes. Mol Microbiol. 2008;68(3):749–767.
  • Reis O, Sousa S, Camejo A, et al. Lapb, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis. 2010;202(4):551–562.
  • Vilchis-Rangel RE, Espinoza-Mellado MDR, Salinas-Jaramillo IJ, et al. Association of Listeria monocytogenes LIPI-1 and LIPI-3 marker llsX with invasiveness. Curr Microbiol. 2019;76(5):637–643.
  • Painset A, Björkman JT, Kiil K, et al. LiSEQ – whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb Genomics. 2019;5(2).
  • Smith A, Hearn J, Taylor C, et al. Listeria monocytogenes isolates from ready to eat plant produce are diverse and have virulence potential. Int J Food Microbiol. 2019;299:23–32.
  • Cabal A, Allerberger F, Huhulescu S, et al. Listeriosis outbreak likely due to contaminated liver pâté consumed in a tavern, Austria, December 2018. Eurosurveillance. 2019;24(39):1900274.
  • Thomas J, Govender N, McCarthy KM, et al. Outbreak of listeriosis in South Africa associated with processed meat. N Engl J Med. 2020;382(7):632–643.
  • ECDC, EFSA. Rapid outbreak assessment: Multi-country outbreak of Listeria monocytogenes sequence type 6 infections linked to ready-to-eat meat products 2019 [05/2020]. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/Listeria-rapid-outbreak-assessment-NL-BE.pdf
  • Moretro T, Schirmer BCT, Heir E, et al. Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int J Food Microbiol. 2017;241:215–224.
  • Wilson A, Gray J, Chandry PS, et al. Phenotypic and genotypic analysis of antimicrobial resistance among Listeria monocytogenes isolated from Australian food production chains. Genes. 2018;9(2):80.
  • Fillgrove KL, Pakhomova S, Schaab MR, et al. Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes. Biochemistry. 2007;46(27):8110–8120.
  • Troxler R, von Graevenitz A, Funke G, et al. Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. Clin Microbiol Infect. 2000;6(10):525–535.
  • Gómez D, Iguácel LP, Rota MC, et al. Occurrence of Listeria monocytogenes in ready-to-eat meat products and meat processing plants in Spain. Foods. 2015;4(3):271–282.
  • Stessl B, Szakmary-Brändle K, Vorberg U, et al. Temporal analysis of the Listeria monocytogenes population structure in floor drains during reconstruction and expansion of a meat processing plant. Int J Food Microbiol. 2020;314:108360.
  • Haralick RM, Elliott GL. Increasing tree search efficiency for constraint satisfaction problems. Artif Intell. 1980;14(3):263–313.