2,855
Views
8
CrossRef citations to date
0
Altmetric
Review

In vivo expressed biologics for infectious disease prophylaxis: rapid delivery of DNA-based antiviral antibodies

ORCID Icon, , & ORCID Icon
Pages 1523-1533 | Received 13 May 2020, Accepted 21 Jun 2020, Published online: 05 Jul 2020

References

  • Smith KF, Goldberg M, Rosenthal S, et al. Global rise in human infectious disease outbreaks. J Roy Soc Interface. 2014;11:20140950. doi: 10.1098/rsif.2014.0950
  • Findlater A, Bogoch II. Human mobility and the global spread of infectious diseases: a focus on air travel. Trends Parasitol. 2018;34:772–783. doi: 10.1016/j.pt.2018.07.004
  • Eisinger RW, Dieffenbach CW, Fauci AS. HIV viral load and transmissibility of HIV infection. Jama. 2019;321:451–452. doi: 10.1001/jama.2018.21167
  • Delamater PL, Street EJ, Leslie TF, et al. Complexity of the basic reproduction number (R0) - volume 25, number 1—January 2019 - emerging infectious diseases journal - CDC. Emerg Infect Dis. 2019;25:1–4. doi: 10.3201/eid2501.171901
  • Bloom DE, Black S, Rappuoli R. Emerging infectious diseases: A proactive approach. Proc National Acad Sci. 2017;114:4055–4059. doi: 10.1073/pnas.1701410114
  • Wolfe DN, Zarrabian AG, Disbrow GL, et al. Progress towards a vaccine against Ebola to meet emergency medical countermeasure needs. Vaccine. 2019;37:7178–7182. doi: 10.1016/j.vaccine.2017.10.111
  • Broadbent AJ, Subbarao K. Influenza virus vaccines: lessons from the 2009 H1N1 pandemic. Curr Opin Virol. 2011;1:254–262. doi: 10.1016/j.coviro.2011.08.002
  • Prevention C for DC and. Vaccine Testing and the Approval Process. (2020).
  • Lurie N, Saville M, Hatchett R, et al. Developing covid-19 vaccines at pandemic speed. New Engl J Med. 2020;382:1969–1973. doi: 10.1056/NEJMp2005630
  • Everts M, Cihlar T, Bostwick JR, et al. Accelerating drug development: antiviral therapies for emerging viruses as a model. Annu Rev Pharmacol. 2016;57:1–15.
  • Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. New Engl J Med. 2020;382:1787–1799. doi:10.1056/nejmoa2001282.
  • Tu Y-F, Chien C-S, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21:2657. doi: 10.3390/ijms21072657
  • Thorlund K, Dron L, Park J, et al. A real-time dashboard of clinical trials for COVID-19. Lancet Digital Heal. 2020;2:e286–e287. doi:10.1016/s2589-7500(20)30086-8.
  • Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395:1569–1578. doi:10.1016/s0140-6736(20)31022-9.
  • Pelfrene E, Mura M, Sanches AC, et al. Monoclonal antibodies as anti-infective products: a promising future? Clin Microbiol Infec. 2018;25:60–64. doi: 10.1016/j.cmi.2018.04.024
  • Salazar G, Zhang N, Fu T-M, et al. Antibody therapies for the prevention and treatment of viral infections. Npj Vaccines. 2017;2:19. doi: 10.1038/s41541-017-0019-3
  • Marston HD, Paules CI, Fauci AS. Monoclonal antibodies for emerging infectious diseases — borrowing from history. New Engl J Med. 2018;378:1469–1472. doi: 10.1056/NEJMp1802256
  • Froude JW, Stiles BG, Pelat T, et al. Antibodies for biodefense. Mabs. 2011;3:517–527. doi: 10.4161/mabs.3.6.17621
  • McTamney P. Utilizing the human body as a bioreactor: direct comparison of in vivo expressed biologics (IVEB) delivery platforms. Antibodies as drugs: from B cell biology to new treatments; 2020 February; Santa Fe, NM; 2020.
  • Wang X, Mathieu M, Brezski RJ. Igg Fc engineering to modulate antibody effector functions. Protein Cell. 2018;9:63–73. doi: 10.1007/s13238-017-0473-8
  • Smatti MK, Thani AAA, Yassine HM. Viral-induced enhanced disease illness. Front Microbiol. 2018;9:2991. doi: 10.3389/fmicb.2018.02991
  • Tseng C-T, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. Plos One. 2012;7:e35421. doi: 10.1371/journal.pone.0035421
  • Liu L, Wei Q, Lin Q, et al. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. Jci Insight. 2019;4:e123158. doi: 10.1172/jci.insight.123158
  • Hummel J, Pagkaliwangan M, Gjoka X, et al. Modeling the downstream processing of monoclonal antibodies reveals cost advantages for continuous methods for a broad range of manufacturing scales. Biotechnol J. 2019;14:1700665. doi: 10.1002/biot.201700665
  • Shukla AA, Wolfe LS, Mostafa SS, et al. Evolving trends in mAb production processes. Bioeng Transl Medicine. 2017;2:58–69. doi: 10.1002/btm2.10061
  • Kelley B. Developing therapeutic monoclonal antibodies at pandemic pace. Nat Biotechnol. 2020;38:540–545. doi: 10.1038/s41587-020-0512-5
  • Hernandez I, Bott SW, Patel AS, et al. Pricing of monoclonal antibody therapies: higher if used for cancer? Am J Managed Care. 2018;24:109–112.
  • Greenwood B. The contribution of vaccination to global health: past, present and future. Philos Trans R Soc B Biol Sci. 2014;369:20130433. doi: 10.1098/rstb.2013.0433
  • Mahy M, Stover J, Stanecki K, et al. Estimating the impact of antiretroviral therapy: regional and global estimates of life-years gained among adults. Sex Transm Infect. 2010;86:ii67.
  • Bedford J, Farrar J, Ihekweazu C, et al. A new twenty-first century science for effective epidemic response. Nature. 2019;575:130–136. doi: 10.1038/s41586-019-1717-y
  • Corti D, Lanzavecchia A. Broadly neutralizing antiviral antibodies. Annu Rev Immunol. 2013;31:705–742. doi: 10.1146/annurev-immunol-032712-095916
  • Patel A, Bah MA, Weiner DB. In vivo delivery of nucleic acid-encoded monoclonal antibodies. Biodrugs. 2020;34:273–293. doi: 10.1007/s40259-020-00412-3
  • Wang D, Tai PW, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discovery. 2019;18:358–378. doi:10.1038/s41573-019-0012-9.
  • Priddy FH, Lewis DJM, Gelderblom HC, et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet Hiv. 2019;6:e230–e239. doi: 10.1016/S2352-3018(19)30003-7
  • Casazza JP. Durable HIV-1 antibody production in humans after AAV8-mediated gene transfer. Conference on retroviruses and opportunistic infections; 2020 March; Boston, MA; 2020.
  • Gardner MR, Fetzer I, Kattenhorn LM, et al. Anti-drug antibody responses impair prophylaxis mediated by AAV-delivered HIV-1 broadly neutralizing antibodies. Mol Ther. 2019;27:650–660. doi:10.1016/j.ymthe.2019.01.004.
  • Martinez-Navio JM, Fuchs SP, Pantry SN, et al. Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression. Immunity. 2019;50:567–575.e5. doi: 10.1016/j.immuni.2019.02.005
  • Kowalski PS, Rudra A, Miao L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27:710–728. doi: 10.1016/j.ymthe.2019.02.012
  • Schlake T, Thran M, Fiedler K, et al. Messenger RNA, a novel avenue to antibody therapy? Mol Ther. 2019;27:773–784. doi: 10.1016/j.ymthe.2019.03.002
  • Thran M, Mukherjee J, Pönisch M, et al. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. Embo Mol Med. 2017;9:1434–1447. doi: 10.15252/emmm.201707678
  • Pardi N, Secreto AJ, Shan X, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:ncomms14630. doi: 10.1038/ncomms14630
  • Sabnis S, Kumarasinghe ES, Salerno T, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26:1509–1519. doi: 10.1016/j.ymthe.2018.03.010
  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol. 2011;23:421–429. doi: 10.1016/j.coi.2011.03.008
  • Algazi AP, Bhatia S, Agarwala SS, et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann Oncol. 2020;31:532–540. doi: 10.1016/j.annonc.2019.12.008
  • Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nat Biotechnol. 1998;16:867–870. doi: 10.1038/nbt0998-867
  • Mir L, Bureau M, Gehl J, et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci. 1999;96:4262–4267. doi: 10.1073/pnas.96.8.4262
  • Rizzuto G, Cappelletti M, Maione D, et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci. 1999;96:6417–6422. doi: 10.1073/pnas.96.11.6417
  • Tjelle TE, Corthay A, Lunde E, et al. Monoclonal antibodies produced by muscle after plasmid injection and electroporation. Mol Ther. 2004;9:328–336. doi: 10.1016/j.ymthe.2003.12.007
  • Perez N, Bigey P, Scherman D, et al. Regulatable systemic production of monoclonal antibodies by in vivo muscle electroporation. Genet Vaccines Ther. 2004;2:1–5. doi: 10.1186/1479-0556-2-2
  • Rosazza C, Meglic S, Zumbusch A, et al. Gene electrotransfer: a mechanistic perspective. Curr Gene Ther. 2016;16:98–129. doi: 10.2174/1566523216666160331130040
  • Khan AS, Smith LC, Abruzzese RV, et al. Optimization of electroporation parameters for the intramuscular delivery of plasmids in pigs. DNA Cell Biol. 2003;22:807–814. doi: 10.1089/104454903322625019
  • Schertzer JD, Plant DR, Lynch GS. Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function. Mol Ther. 2006;13:795–803. doi: 10.1016/j.ymthe.2005.09.019
  • Molnar MJ, Gilbert R, Lu Y, et al. Factors Influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol Ther. 2004;10:447–455. doi: 10.1016/j.ymthe.2004.06.642
  • Bureau MF, Naimi S, Ibad TR, et al. Intramuscular plasmid DNA electrotransfer. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 2004;1676:138–148. doi: 10.1016/j.bbaexp.2003.11.005
  • Demonbreun AR, McNally EM. DNA electroporation, isolation and Imaging of Myofibers. J Visualized Exp. 2015;106:e53551.
  • Wang X-D, Tang J-G, Xie X, et al. A comprehensive study of optimal conditions for naked plasmid DNA transfer into skeletal muscle by electroporation. J Gene Med. 2005;7:1235–1245. doi: 10.1002/jgm.765
  • Lesbordes J-CC, Bordet T, Haase G, et al. In vivo electrotransfer of the cardiotrophin-1 gene into skeletal muscle slows down progression of motor neuron degeneration in pmn mice. Hum Mol Genet. 2002;11:1615–1625. doi: 10.1093/hmg/11.14.1615
  • Yamazaki T, Nagashima M, Ninomiya D, et al. Passive immune-prophylaxis against influenza virus infection by the expression of neutralizing anti-hemagglutinin monoclonal antibodies from plasmids. Jpn J Infect Dis. 2011;64:40–49.
  • Flingai S, Plummer EM, Patel A, et al. Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy. Sci Rep. 2015;5:12616. doi: 10.1038/srep12616
  • Elliott ST, Kallewaard NL, Benjamin E, et al. DMAb inoculation of synthetic cross reactive antibodies protects against lethal influenza A and B infections. npj Vaccines. 2017;2:18. doi: 10.1038/s41541-017-0020-x
  • Muthumani K, Block P, Flingai S, et al. Rapid and long-term immunity elicited by DNA-encoded antibody prophylaxis and DNA vaccination against chikungunya virus. J Infect Dis. 2016;214:369–378. doi: 10.1093/infdis/jiw111
  • Andrews CD, Luo Y, Sun M, et al. In vivo production of monoclonal antibodies by gene transfer via electroporation protects against lethal influenza and Ebola infections. Mol Ther Methods Clin Dev. 2017;7:74–82. doi: 10.1016/j.omtm.2017.09.003
  • Patel A, Park DH, Davis CW, et al. In vivo delivery of synthetic human DNA-encoded monoclonal antibodies protect against Ebolavirus infection in a mouse model. Cell Rep. 2018;25:1982–1993.e4. doi: 10.1016/j.celrep.2018.10.062
  • Choi H, Kudchodkar SB, Reuschel EL, et al. Synthetic nucleic acid antibody prophylaxis confers rapid and durable protective immunity against Zika virus challenge. Hum Vaccin Immunother. 2019;16(4):907–918.
  • Esquivel RN, Patel A, Kudchodkar SB, et al. In vivo delivery of a DNA-encoded monoclonal antibody protects non-human primates against Zika virus. Mol Ther. 2019;27:974–985. doi: 10.1016/j.ymthe.2019.03.005
  • Liu Y, Cao W, Sun M, et al. AAABroadly neutralizing antibodies for HIV-1: efficacies, challenges and opportunities. Emerg Microbes Infec. 2020;9:194–206. doi: 10.1080/22221751.2020.1713707
  • Caskey M. Broadly neutralizing antibodies for the treatment and prevention of HIV infection. Curr Opin Hiv Aids. 2020;15:49–55. doi: 10.1097/COH.0000000000000600
  • Klein F, Halper-Stromberg A, Horwitz JA, et al. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature. 2012;492:118–122. doi: 10.1038/nature11604
  • Kong R, Louder MK, Wagh K, et al. Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes. J Virol. 2015;89:2659–2671. doi: 10.1128/JVI.03136-14
  • Wise MC, Xu Z, Tello-Ruiz E, et al. In vivo delivery of synthetic DNA-encoded antibodies induces broad HIV-1-neutralizing activity. J Clin Invest. 2019;130:827–837. doi: 10.1172/JCI132779
  • Mulangu S, Dodd LE, Davey Jr RT, et al. A Randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 2019;381:2293–2303. doi: 10.1056/NEJMoa1910993
  • Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun. 2020;11:2251. doi: 10.1038/s41467-020-16256-y
  • Wrapp D, Vlieger DD, Corbett KS, et al. Structural basis for potent neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell. 2020;181:1004–1015.e15. doi:10.1016/j.cell.2020.04.031.
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infection. 2020;80:607–613. doi:10.1002/jmv.25897 doi: 10.1016/j.jinf.2020.03.037
  • Giambenedetto SD, Ciccullo A, Borghetti A, et al. Off-label Use of tocilizumab in patients with SARS-CoV-2 infection. J Med Virol. 2020. doi:10.1002/jmv.25897.
  • Cavalli G, Luca GD, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2:e325–e331. doi: 10.1016/S2665-9913(20)30127-2
  • Luo P, Liu Y, Qiu L, et al. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol. 2020;92:814–818. doi:10.1002/jmv.25801.
  • Tjelle TE, Salte R, Mathiesen I, et al. A novel electroporation device for gene delivery in large animals and humans. Vaccine. 2006;24:4667–4670. doi: 10.1016/j.vaccine.2005.08.068
  • Hollevoet K, Vleeschauwer SD, Smidt ED, et al. Bridging the clinical gap for DNA-based antibody therapy through translational studies in sheep. Hum Gene Ther. 2019;30:1431–1443. doi: 10.1089/hum.2019.128
  • Chirmule N, Jawa V, Meibohm B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. Aaps J. 2012;14:296–302. doi: 10.1208/s12248-012-9340-y