1,984
Views
2
CrossRef citations to date
0
Altmetric
Articles

Interferon-gamma-activated macrophages infected with Burkholderia cenocepacia process and present bacterial antigens to T-cells by class I and II major histocompatibility complex molecules

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2000-2012 | Received 08 May 2020, Accepted 28 Aug 2020, Published online: 17 Sep 2020

References

  • Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex: past, present and future. Syst Appl Microbiol. 2011 Apr;34(2):87–95. doi: 10.1016/j.syapm.2010.10.002
  • Blanchard AC, Tang L, Tadros M, et al. Burkholderia cenocepacia ET12 transmission in adults with cystic fibrosis. Thorax. 2020 Jan;75(1):88–90. doi: 10.1136/thoraxjnl-2019-214098
  • Mahenthiralingam E, Vandamme P, Campbell ME, et al. Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin Infect Dis. 2001 Nov 1;33(9):1469–1475. doi: 10.1086/322684
  • Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect. 2010 Jul;16(7):821–830. doi: 10.1111/j.1469-0691.2010.03237.x
  • Valvano MA. Intracellular survival of Burkholderia cepacia complex in phagocytic cells. Can J Microbiol. 2015 Sep;61(9):607–615. doi: 10.1139/cjm-2015-0316
  • Schwab U, Abdullah LH, Perlmutt OS, et al. Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun. 2014 Nov;82(11):4729–4745. doi: 10.1128/IAI.01876-14
  • Saini L, Galsworthy S, John M, et al. Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology. 1999;145:3465–3475. doi: 10.1099/00221287-145-12-3465
  • Lamothe J, Huynh KK, Grinstein S, et al. Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol. 2007 Jan;9(1):40–53. doi: 10.1111/j.1462-5822.2006.00766.x
  • Huynh KK, Plumb JD, Downey GP, et al. Inactivation of macrophage Rab7 by Burkholderia cenocepacia. J Innate Immun. 2010;2:522–533. doi: 10.1159/000319864
  • Flannagan RS, Jaumouillé V, Huynh KK, et al. Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42. Cell Microbiol. 2012;14:239–254. doi: 10.1111/j.1462-5822.2011.01715.x
  • Rosales-Reyes R, Skeldon AM, Aubert DF, et al. The Type VI secretion system of Burkholderia cenocepacia targets multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol. 2012;14:255–273. doi: 10.1111/j.1462-5822.2011.01716.x
  • Aubert DF, Xu H, Yang J, et al. A Burkholderia Type VI effector Deamidates Rho GTPases to activate the pyrin inflammasome and Triggers Inflammation. Cell Host Microbe. 2016;19:664–674. doi: 10.1016/j.chom.2016.04.004
  • Keith KE, Hynes DW, Sholdice JE, et al. Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepacia. Microbiology. 2009;155:1004–1015. doi: 10.1099/mic.0.026781-0
  • Bylund J, Burgess LA, Cescutti P, et al. Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem. 2006 Feb 3;281(5):2526–2532. doi: 10.1074/jbc.M510692200
  • Bylund J, Campsall PA, Ma RC, et al. Burkholderia cenocepacia induces neutrophil necrosis in chronic granulomatous disease. J Immunol. 2005 Mar 15;174(6):3562–3569. doi: 10.4049/jimmunol.174.6.3562
  • Macdonald KL, Speert DP. Differential modulation of innate immune cell functions by the Burkholderia cepacia complex: Burkholderia cenocepacia but not Burkholderia multivorans disrupts maturation and induces necrosis in human dendritic cells. Cell Microbiol. 2008 Jul 3;10(10):2138–2149. doi: 10.1111/j.1462-5822.2008.01197.x
  • Kotrange S, Kopp B, Akhter A, et al. Burkholderia cenocepacia O polysaccharide chain contributes to caspase-1-dependent IL-1beta production in macrophages. J Leukocyte Biol. 2011 Mar;89(3):481–488. doi: 10.1189/jlb.0910513
  • Urban TA, Griffith A, Torok AM, et al. Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infect Immun. 2004 Sep;72(9):5126–5134. doi: 10.1128/IAI.72.9.5126-5134.2004
  • Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015 Mar;264(1):182–203. doi: 10.1111/imr.12266
  • Hume DA. Macrophages as APC and the dendritic cell myth. J Immunol. 2008 Nov 1;181(9):5829–5835. doi: 10.4049/jimmunol.181.9.5829
  • Neefjes J, Jongsma ML, Paul P, et al. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011 Nov 11;11(12):823–836. doi: 10.1038/nri3084
  • Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015 Apr;15(4):203–216. doi: 10.1038/nri3818
  • Martín-Orozco N, Isibasi A, Ortiz-Navarrete V. Macrophages present exogenous antigens by class I major histocompatibility complex molecules via a secretory pathway as a consequence of interferon-gamma activation. Immunology. 2001 May;103(1):41–48. doi: 10.1046/j.0019-2805.2001.01226.x
  • Hamad MA, Skeldon AM, Valvano MA. Construction of aminoglycoside-sensitive Burkholderia cenocepacia strains for use in studies of intracellular bacteria with the gentamicin protection assay. Appl Environ Microbiol. 2010 May;76(10):3170–3176. doi: 10.1128/AEM.03024-09
  • Craig FF, Coote JG, Parton R, et al. A plasmid which can be transferred between Escherichia coli and Pasteurella haemolytica by electroporation and conjugation. J Gen Microbiol. 1989 Nov;135:2885–2890.
  • Rosales-Reyes R, Aubert DF, Tolman JS, et al. Burkholderia cenocepacia type VI secretion system mediates escape of type II secreted proteins into the cytoplasm of infected macrophages. PLoS ONE. 2012;7(7):e41726. doi: 10.1371/journal.pone.0041726
  • Rosales-Reyes R, Sánchez-Gómez C, Ortiz-Navarrete V, et al. Burkholderia cenocepacia induces macropinocytosis to enter macrophages. Biomed Res Int. 2018 Apr 22;2018: 4271560. doi: 10.1155/2018/4271560
  • Trost M, English L, Lemieux S, et al. The phagosomal proteome in interferon-γ-activated macrophages. Immunity. 2009 Jan 16;30(1):143–154. doi: 10.1016/j.immuni.2008.11.006
  • Herrero C, Marques L, Lloberas J, et al. IFN-γ-dependent transcription of MHC class II IA is impaired in macrophages from aged mice. J Clin Invest. 2001 Feb;107(4):485–493. doi: 10.1172/JCI11696
  • Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 2011 Apr;300(4):C723–C742. doi: 10.1152/ajpcell.00462.2010
  • Bonifaz L, Cervantes-Silva M, Ontiveros-Dotor E, et al. A role for mitochondria in antigen processing and presentation. Immunology. 2014 Sep 23;144(3):461–471. doi: 10.1111/imm.12392
  • Allen PM, McKean DJ, Beck BN, et al. Direct evidence that a class II molecule and a simple globular protein generate multiple determinants. J Exp Med. 1985 Oct 1;162(4):1264–1274. doi: 10.1084/jem.162.4.1264
  • De Haan L, Hearn AR, Rivett AJ, et al. Enhanced delivery of exogenous peptides into the class I antigen processing and presentation pathway. Infect Immun. 2002 Jun;70(6):3249–3258. doi: 10.1128/IAI.70.6.3249-3258.2002
  • Rosales-Reyes R, Alpuche-Aranda C, Ramirez-Aguilar Mde L, et al. Survival of Salmonella enterica serovar Typhimurium within late endosomal-lysosomal compartments of B lymphocytes is associated with the inability to use the vacuolar alternative major histocompatibility complex class I antigen-processing pathway. Infect Immun. 2005 Jul;73(7):3937–3944. doi: 10.1128/IAI.73.7.3937-3944.2005
  • Boehm U, Klamp T, Groot M, et al. Cellular responses to interferon-γ. Annu Rev Immunol. 1997;15:749–795. doi: 10.1146/annurev.immunol.15.1.749
  • Zhou F. Molecular mechanisms of IFN-γ to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol. 2009;28(3-4):239–260. doi: 10.1080/08830180902978120
  • Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013 Apr;13(4):227–242. doi: 10.1038/nri3405
  • Walpole GFW, Plumb JD, Chung D, et al. Inactivation of Rho GTPases by Burkholderia cenocepacia Induces a WASH-mediated actin Polymerization that delays Phagosome maturation. Cell Rep. 2020 Jun 2;31(9):107721. doi: 10.1016/j.celrep.2020.107721
  • Peters PJ, Neefjes JJ, Oorschot V, et al. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature. 1991 Feb 21;349(6311):669–676. doi: 10.1038/349669a0
  • Tulp A, Verwoerd D, Dobberstein B, et al. Isolation and characterization of the intracellular MHC class II compartment. Nature. 1994 May 12;369(6476):120–126. doi: 10.1038/369120a0
  • Viner NJ, Nelson CA, Deck B, et al. Complexes generated by the binding of free peptides to class II MHC molecules are antigenically diverse compared with those generated by intracellular processing. J Immunol. 1996 Apr 1;156(7):2365–2368.
  • Kooi C, Corbett CR, Sokol PA. Functional analysis of the Burkholderia cenocepacia ZmpA metalloprotease [Research support, Non-U.S. Gov't]. J Bacteriol. 2005 Jul;187(13):4421–4429. doi: 10.1128/JB.187.13.4421-4429.2005
  • Niedermann G, Butz S, Ihlenfeldt HG, et al. Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity. 1995 Mar;2(3):289–299. doi: 10.1016/1074-7613(95)90053-5
  • Ortiz-Navarrete V, Hammerling GJ. Surface appearance and instability of empty H-2 class I molecules under physiological conditions. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3594–3597. doi: 10.1073/pnas.88.9.3594
  • Guagliardi LE, Koppelman B, Blum JS, et al. Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature. 1990 Jan 11;343(6254):133–139. doi: 10.1038/343133a0
  • Phan UT, Arunachalam B, Cresswell P. Gamma-interferon-inducible lysosomal thiol reductase (GILT). maturation, activity, and mechanism of action. J Biol Chem. 2000 Aug 25;275(34):25907–25914. doi: 10.1074/jbc.M003459200
  • Assani K, Tazi MF, Amer AO, et al. IFN-γ stimulates autophagy-mediated clearance of Burkholderia cenocepacia in human cystic fibrosis macrophages. PLoS One. 2014;9(5):e96681. doi: 10.1371/journal.pone.0096681
  • Crotzer VL, Blum JS. Autophagy and its role in MHC-mediated antigen presentation. J Immunol. 2009 Mar 15;182(6):3335–3341. doi: 10.4049/jimmunol.0803458
  • Musson JA, Reynolds CJ, Rinchai D, et al. CD4+ t cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis. J Immunol. 2014 Dec 15;193(12):6041–6049. doi: 10.4049/jimmunol.1402273
  • Guermonprez P, Saveanu L, Kleijmeer M, et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature. 2003 Sep 25;425(6956):397–402. doi: 10.1038/nature01911
  • Houde M, Bertholet S, Gagnon E, et al. Phagosomes are competent organelles for antigen cross-presentation. Nature. 2003 Sep 25;425(6956):402–406. doi: 10.1038/nature01912
  • Harding CV. Phagocytic processing of antigens for presentation by MHC molecules. Trends Cell Biol. 1995 Mar;5(3):105–109. doi: 10.1016/S0962-8924(00)88959-X
  • Chefalo PJ, Harding CV. Processing of exogenous antigens for presentation by class I MHC molecules involves post-Golgi peptide exchange influenced by peptide-MHC complex stability and acidic pH. J Immunol. 2001 Aug 1;167(3):1274–1282. doi: 10.4049/jimmunol.167.3.1274