11,717
Views
45
CrossRef citations to date
0
Altmetric
Review

Zoonotic and reverse zoonotic events of SARS-CoV-2 and their impact on global health

, ORCID Icon, , , , , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 2222-2235 | Received 14 Jun 2020, Accepted 20 Sep 2020, Published online: 14 Oct 2020

References

  • Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol. 2020;92(4):401–402.
  • WHO. WHO director-general’s opening remarks at the media briefing on covid-19-11 March 2020. 2020. Available from: https://www who int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-March-2020.
  • Hui DS, Azhar EI, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis; 2020;91:264–266.
  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Version 2. Nat Microbiol. 2020;5(4):536–544.
  • Ye ZW, Yuan S, Yuen KS, et al. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020;16(10):1686–1697.
  • Saif LJ. Animal coronavirus vaccines: lessons for SARS. Dev Biol (Basel. 2004;119:129–140.
  • Saif LJ. Animal coronaviruses: what can they teach us about the severe acute respiratory syndrome? Rev Sci Tech. 2004;23(2):643–660.
  • Burrell, CJ, Howard, CR, Murphy, FA. Fenner and white medical virology. San Diego: Academic Press; 2016.
  • Peiris JSM. 57 - Coronaviruses. In: Greenwood D, Barer M, Slack R, Irving W, editor. Medical microbiology. 18th ed. Edinburgh: Churchill Livingstone; 2012. p. 587–593.
  • Laude H, Van Reeth K, Pensaert M. Porcine respiratory coronavirus: molecular features and virus-host interactions. Vet Res. 1993;24(2):125–150.
  • Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490–502.
  • Jin Y, Yang H, Ji W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372.
  • Fung SY, Yuen KS, Ye ZW, et al. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020;9(1):558–570.
  • Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–192.
  • Henry R. Etymologia coronavirus. Emerg Infect Dis. 2020;26(5):1027.
  • Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200–1204.
  • Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol. 2012;2(3):264–275.
  • Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses-a statement of the Coronavirus Study Group. bioRxiv (preprint). 2020 [cited 2020 Jun 13]. doi:10.1101/2020.02.07.937862
  • Alagaili AN, Briese T, Mishra N, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. mBio. 2014;5(2):e00884–14.
  • Petrosillo N, Viceconte G, Ergonul O, et al. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729–734.
  • Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–452.
  • Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820.
  • Majumder M, Mandl KD. Early transmissibility assessment of a novel coronavirus in Wuhan, China. SRRN 2020. [cited 2020 Aug 14]. doi:10.2139/ssrn.3524675.
  • Woo PS MBB, David C, et al. Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (SARS-CoV-2) outbreak. J R Soc Interface. 2020;17. doi:10.1098/rsif.2020.0144.
  • Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill 2020;25(4):1–5.
  • Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet. 2020;395(10225):689–697.
  • Zhao S, Musa SS, Lin Q, et al. Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first Half of January 2020: a data-driven modelling analysis of the early outbreak. J Clin Med. 2020;9(2):388.
  • Sanche S, Lin YT, Xu C, et al. The novel coronavirus, 2019-nCoV, is highly contagious and more infectious than initially estimated. medRxiv (preprint). 2020. doi:10.1101/2020.02.07.20021154
  • Hao X, Cheng S, Wu D. et al. Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 2020. doi:10.1038/s41586-020-2554-8
  • Frank HK, Enard D, Boyd SD. Exceptional diversity and selection pressure on SARS-CoV and SARS-CoV-2 host receptor in bats compared to other mammals. bioRxiv (preprint). 2020 [cited 2020 Jun 13]; doi:10.1101/2020.04.20.051656
  • Pfaller CK, Donohue RC, Nersisyan S, et al. Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol. 2018;16(11):e2006577.
  • Christofi T, Zaravinos A. RNA editing in the forefront of epitranscriptomics and human health. J Transl Med. 2019;17(1):319.
  • Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–374.
  • Mateus J, Grifoni A, Tarke A, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020. doi:10.1126/science.abd3871.
  • Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):179.
  • Xue KS, Bloom JD. Linking influenza virus evolution within and between human hosts. Virus Evol. 2020;6(1). doi:10.1093/ve/veaa010.
  • Benedetti F, Pachetti M, Marini B, et al. SARS-CoV-2: march toward adaptation. J Med Virol. 2020;10; doi:10.1002/jmv.26233.
  • Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637.
  • Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78:779–784.
  • Jin X, Xu K, Jiang P, et al. Virus strain from a mild COVID-19 patient in Hangzhou represents a new trend in SARS-CoV-2 evolution potentially related to furin cleavage site. Emerg Microbes Infect. 2020;9(1):1474–1488.
  • Anand P, Puranik A, Aravamudan M, et al. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. Elife. 2020;9:e58603.
  • Böttcher-Friebertshäuser E, Klenk HD, Garten W. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathog Dis. 2013;69(2):87–100.
  • Grubaugh ND, Hanage WP, Rasmussen AL. Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear. Cell. 2020. S0092-8674(20)30817-5.
  • Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020. S0092-8674(20)30820-5.
  • Lam TT, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. 2020. [cited 2020 Jun 13]. doi:10.1038/s41586-020-2169-0.
  • Lee J, Hughes T, Lee MH, et al. No evidence of coronaviruses or other potentially zoonotic viruses in Sunda pangolins (Manis javanica) entering the wildlife trade via Malaysia. bioRxiv (Preprint) 2020. doi:10.1101/2020.06.19.158717
  • Liu P, Jiang JZ, Wan XF, et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog. 2020;16(5):e1008421.
  • Li X, Xiao K, Chen X, et al. Pathogenicity, tissue tropism and potential vertical transmission of SARSr-CoV-2 in Malayan pangolins. bioRxiv (Preprint) 2020. doi:10.1101/2020.06.22.164442
  • Li X, Giorgi EE, Marichann MH, et al. Emergence of SARS-CoV-2 through recombination and strong purifying selection. bioRxiv (Preprint). 2020 [cited 2020 Jun 13]. doi:10.1101/2020.03.20.000885
  • Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454.
  • Melin AD, Janiak MC, Marrone F, et al. Comparative ACE2 variation and primate COVID-19 risk. bioRxiv (Preprint). 2020 [cited 2020 Jun 13]. doi:10.1101/2020.04.09.034967
  • van den Brand JM, Haagmans BL, Leijten L, et al. Pathology of experimental SARS coronavirus infection in cats and ferrets. Vet Pathol. 2008 Jul;45(4):551–562.
  • Guo H, Guo A, Wang C, et al. Expression of feline angiotensin converting enzyme 2 and its interaction with SARS-CoV S1 protein. Res Vet Sci. 2008 Jun;84(3):494–496.
  • Xu D, Zhang Z, Wang FS. SARS-associated coronavirus quasispecies in individual patients. N Engl J Med. 2004;350(13):1366–1367.
  • Park D, Huh HJ, Kim YJ, et al. Analysis of intrapatient heterogeneity uncovers the microevolution of Middle East respiratory syndrome 234 coronavirus. Cold Spring Harb Mol Case Stud. 2016;2; doi:10.1101/mcs.a001214.
  • Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020 [cited 2020 Jun 13]. doi:10.1093/nsr/nwaa036. PMCID: PMC7107875.
  • Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;368(6494):1016–1020.
  • Chan JF, Zhang AJ, Yuan S, et al. Simulation of the clinical and pathological manifestations of Coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa325.
  • Kim YI, Kim SG, Kim SM, et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020;27(5):704–709. e2.
  • Griffin BD, Chan M, Tailor N, et al. North American deer mice are susceptible to SARS-CoV-2. bioRxiv (Preprint) 2020. doi:10.1101/2020.07.25.221291.
  • Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7):e00127–20.
  • Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.
  • Zhou J, Li C, Liu X, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med. 2020;26(7):1077–1083.
  • CDC. Coronavirus Disease 2019 (COVID-19) – pets & other animals. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/positive-pet.html.
  • USDA. Confirmed cases of SARS-CoV-2 in Animals in the United States. 2020. Available from: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/sa_one_health/sars-cov-2-animals-us.
  • AVMA. In-depth summary of reports of naturally acquired SARS-CoV-2 infections in domestic animals and farmed or captive wildlife 2020. Available from: https://www.avma.org/resources-tools/animal-health-and-welfare/covid-19/depth-summary-reports-naturally-acquired-sars-cov-2-infections-domestic-animals-and-farmed-or.
  • Sit THC, Brackman CJ, Ip SM, et al. Infection of dogs with SARS-CoV-2. Nature. 2020. doi:10.1038/s41586-020-2334-5.
  • Gollakner R, Capua I. Is COVID-19 the first pandemic that evolves into a panzootic? Vet Ital. 2020;56(1):11–12.
  • ABC. 1st pet dog in US with COVID-19 dies in NYC, family details his last days. 2020. Available from: https://abc13.com/first-dog-with-covid-pets-coronavirus-buddy-german-shepherd/6341676/.
  • Tiwari R, Dhama K, Sharun K, et al. COVID-19: animals, veterinary and zoonotic links. Vet Q. 2020;40(1):169–182.
  • Halfmann PJ, Hatta M, Chiba S, et al. Transmission of SARS-CoV-2 in domestic cats. N Engl J Med. 2020. doi:10.1056/NEJMc2013400.
  • Zhang Q, Zhang H, Huang K, et al. SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation. bioRxiv (Preprint). 2020. doi:10.1101/2020.04.01.021196
  • Patterson EI, Elia G, Grassi A, et al. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. bioRxiv (Preprint) 2020. doi:10.1101/2020.07.21.214346
  • Oreshkova N, Molenaar RJ, Vreman S, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance. 2020;25(23). doi:10.2807/1560-7917.ES.2020.25.23.2001005.
  • IDEXX SARS-CoV-2 (COVID-19) RealPCR Test 2020. Available from: https://www.idexx.com/en/veterinary/reference-laboratories/idexx-realpcr-tests/idexx-sars-cov-2-covid-19-realpcr-test/
  • Mackenzie JS, Jeggo M. The One health approach-why is it so important? Trop Med Infect Dis. 2019;4(2):88.
  • Bhatia R. Implementation framework for One health approach. Indian J Med Res. 2019;149(3):329–331.
  • Harapan H, Itoh N, Yufika A, et al. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health. 2020;13(5):667–673.
  • Steele S, Weerasinghe G, Gäng R, et al. Support the global public health community. Vet Rec. 2020;186(17):569–570.
  • Schlottau K, Rissmann M, Graaf A, et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 2020. doi:10.1016/S2666-5247(20)30089-6