3,206
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A host-based whole genome sequencing study reveals novel risk loci associated with severity of influenza A(H1N1)pdm09 infection

ORCID Icon, , , , , , , , , , , ORCID Icon & show all
Pages 123-131 | Received 02 Oct 2020, Accepted 24 Dec 2020, Published online: 17 Jan 2021

References

  • Josset L, Engelmann F, Haberthur K, et al. Increased viral loads and exacerbated innate host responses in aged macaques infected with the 2009 pandemic H1N1 influenza A virus. J Virol. 2012;86(20):11115–11127.
  • Simonsen L, Spreeuwenberg P, Lustig R, et al. Global mortality estimates for the 2009 influenza pandemic from the GLaMOR project: a modeling study. PLoS Med. 2013;10(11):e1001558.
  • Fraser C, Donnelly CA, Cauchemez S, et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science (New York, NY). 2009;324(5934):1557–1561.
  • Munster VJ, de Wit E, van den Brand JM, et al. Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. Science (New York, NY). 2009;325(5939):481–483.
  • Patel M, Dennis A, Flutter C, et al. Pandemic (H1N1) 2009 influenza. Br J Anaesth. 2010;104(2):128–142.
  • Chen Y, Zhu W, Bai T, et al. The substitution V379I in PA protein attenuates the pathogenicity of influenza A (H1N1) pdm09 viruses in mice. Sci China Life Sci. 2017;60(9):1044–1046.
  • Trammell RA, Liberati TA, Toth LA. Host genetic background and the innate inflammatory response of lung to influenza virus. Microbes Infect. 2012;14(1):50–58.
  • Morales-García G, Falfán-Valencia R, García-Ramírez RA, et al. Pandemic influenza A/H1N1 virus infection and TNF, LTA, IL1B, IL6, IL8, and CCL polymorphisms in Mexican population: a case-control study. BMC Infect Dis. 2012;12:1−9.
  • Liu Y, Li S, Zhang G, et al. Genetic variants in IL1A and IL1B contribute to the susceptibility to 2009 pandemic H1N1 influenza A virus. BMC Immunol. 2013;14:1−10.
  • Falfán-Valencia R, Narayanankutty A, Reséndiz-Hernández JM, et al. An increased frequency in HLA class I alleles and haplotypes suggests genetic susceptibility to influenza A (H1N1) 2009 pandemic: a case-control study. J Immunol Res. 2018;2018:1−12.
  • Elsayed SM, Hassanein OM, Hassan NHA. Influenza A (H1N1) virus infection and TNF-308, IL6, and IL8 polymorphisms in Egyptian population: a case-control study. J Basic Appl Zool. 2019;80(1):1−6.
  • Zhou J, To KK, Dong H, et al. A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza A virus infection. J Infect Dis. 2012;206(4):495–503.
  • Keynan Y, Malik S, Fowke KR. The role of polymorphisms in host immune genes in determining the severity of respiratory illness caused by pandemic H1N1 influenza. Public Health Genomics. 2013;16(1-2):9–16.
  • Everitt AR, Clare S, Pertel T, et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature. 2012;484(7395):519–523.
  • Allen EK, Randolph AG, Bhangale T, et al. SNP-mediated disruption of CTCF binding at the IFITM3 promoter is associated with risk of severe influenza in humans. Nat Med. 2017;23(8):975–983.
  • Paquette SG, Banner D, Zhao Z, et al. Interleukin-6 is a potential biomarker for severe pandemic H1N1 influenza A infection. PloS one. 2012;7(6):e38214.
  • Esposito S, Molteni CG, Giliani S, et al. Toll-like receptor 3 gene polymorphisms and severity of pandemic A/H1N1/2009 influenza in otherwise healthy children. Virol J. 2012;9:1−8.
  • To KKW, Zhou J, Song YQ, et al. Surfactant protein B gene polymorphism is associated with severe influenza. Chest. 2014;145(6):1237–1243.
  • García-Ramírez RA, Ramírez-Venegas A, Quintana-Carrillo R, et al. IL6, and IL1B Polymorphisms Are associated with severe influenza A (H1N1) virus infection in the Mexican population. PloS one. 2015;10(12):e0144832.
  • Maestri A, Sortica VA, Tovo-Rodrigues L, et al. Siaα2-3Galβ1-receptor genetic variants Are associated with influenza A(H1N1)pdm09 severity. PloS one. 2015;10(10):e0139681.
  • Zhou J, Wang D, Wong BH, et al. Identification and characterization of GLDC as host susceptibility gene to severe influenza. EMBO Mol Med. 2019;11(1):1−14.
  • Zúñiga J, Buendía-Roldán I, Zhao Y, et al. Genetic variants associated with severe pneumonia in A/H1N1 influenza infection. Eur Respir J. 2012;39(3):604–610.
  • Cheng Z, Zhou J, To KK, et al. Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenza. J Infect Dis. 2015;212(8):1214–1221.
  • Garcia-Etxebarria K, Bracho MA, Galán JC, et al. No major host genetic risk factor Contributed to A(H1N1)2009 influenza severity. PloS one. 2015;10(9):e0135983.
  • To KK, Zhou J, Chan JF, et al. Host genes and influenza pathogenesis in humans: an emerging paradigm. Curr Opin Virol. 2015;14:7–15.
  • Goldstein EJ, Harvey WT,Wilkie GS, et al. Integrating patient and whole-genome sequencing data to provide insights into the epidemiology of seasonal influenza A(H3N2) viruses. Microbial Genomics. 2018;4(1):e000137.
  • National Health Commission of the People’s Republic of China SaoCM. Protocol for diagnosis and treatment of influenza (2019 version). Chin J Clin Infections Diseases. 2019;12(6):451–455.
  • Li M, Shen L, Chen L, et al. Novel genetic susceptibility loci identified by family based whole exome sequencing in Han Chinese schizophrenia patients. Transl Psychiatry. 2020;10(1):1−10.
  • Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575.
  • Yang J, Lee SH, Goddard ME, et al. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.
  • Li M, Li J, Li MJ, et al. Robust and rapid algorithms facilitate large-scale whole genome sequencing downstream analysis in an integrative framework. Nucleic Acids Res. 2017;45(9):e75.
  • Chen J, Bardes EE, Aronow BJ, et al. Toppgene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305−W311.
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.
  • Liberzon A, Subramanian A, Pinchback R, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–1740.
  • Sarda C, Palma P, Rello J. Severe influenza: overview in critically ill patients. Curr Opin Crit Care. 2019;25(5):449–457.
  • Chen J, Cai Z, Bai M, et al. The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Res. 2018;28(10):981–995.
  • Hou P, Chen F, Yong H, et al. PTBP3 contributes to colorectal cancer growth and metastasis via translational activation of HIF-1α. J Exp Clin Cancer Res CR. 2019;38(1):1−14.
  • Shata MT, Abdel-Hameed EA, Hetta HF, et al. Immune activation in HIV/HCV-infected patients is associated with low-level expression of liver expressed antimicrobial peptide-2 (LEAP-2). J Clin Pathol. 2013;66(11):967–975.
  • Ringeard M, Marchand V, Decroly E, et al. FTSJ3 is an RNA 2’-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature. 2019;565(7740):500–504.
  • Züst R, Cervantes-Barragan L, Habjan M, et al. Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol. 2011;12(2):137–143.
  • Mahoney JA, Ntolosi B, DaSilva RP, et al. Cloning and characterization of CPVL, a novel serine carboxypeptidase, from human macrophages. Genomics. 2001;72(3):243–251.
  • Lin MG, Hurley JH. Structure and function of the ULK1 complex in autophagy. Curr Opin Cell Biol. 2016;39:61–68.
  • Choudhary ML, Alagarasu K, Chaudhary U, et al. Association of single nucleotide polymorphisms in TNFA and IL10 genes with disease severity in influenza A/H1N1pdm09 virus infections: a study from Western India. Viral Immunol. 2018;31(10):683–688.
  • Van Damme N, Goff D, Katsura C, et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe. 2008;3(4):245–252.
  • Tokarev A, Suarez M, Kwan W, et al. Stimulation of NF-κB activity by the HIV restriction factor BST2. J Virol. 2013;87(4):2046–2057.
  • Kong N, Shan T, Wang H, et al. BST2 suppresses porcine epidemic diarrhea virus replication by targeting and degrading virus nucleocapsid protein with selective autophagy. Autophagy. 2020;16(10):1737−1752.
  • Schenk M, Krutzik SR, Sieling PA, et al. NOD2 triggers an interleukin-32-dependent human dendritic cell program in leprosy. Nat Med. 2012;18(4):555–563.
  • Wang R, Zhu Y, Lin X, et al. Influenza M2 protein regulates MAVS-mediated signaling pathway through interacting with MAVS and increasing ROS production. Autophagy. 2019;15(7):1163–1181.
  • Guo X, Zhu Z, Zhang W, et al. Nuclear translocation of HIF-1α induced by influenza A (H1N1) infection is critical to the production of proinflammatory cytokines. Emerg Microbes Infect. 2017;6(5):e39.
  • Thomas M, Mani RS, Philip M, et al. Proinflammatory chemokines are major mediators of exuberant immune response associated with influenza A (H1N1) pdm09 virus infection. J Med Virol. 2017;89(8):1373–1381.
  • Bradley-Stewart A, Jolly L, Adamson W, et al. Cytokine responses in patients with mild or severe influenza A(H1N1)pdm09. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2013;58(1):100–107.
  • Wang Q, Fang P, He R, et al. O-GlcNAc transferase promotes influenza A virus-induced cytokine storm by targeting interferon regulatory factor-5. Sci Adv. 2020;6(16):eaaz7086.
  • Zhao C, Chen J, Cheng L, et al. Deficiency of HIF-1α enhances influenza A virus replication by promoting autophagy in alveolar type II epithelial cells. Emerg Microbes Infect. 2020;9(1):691–706.
  • Califano D, Furuya Y, Roberts S, et al. IFN-γ increases susceptibility to influenza A infection through suppression of group II innate lymphoid cells. Mucosal Immunol. 2018;11(1):209–219.
  • Liu B, Zhang X, Deng W, et al. Severe influenza A(H1N1)pdm09 infection induces thymic atrophy through activating innate CD8(+)CD44(hi) T cells by upregulating IFN-γ. Cell Death Dis. 2014;5(10):e1440.
  • van der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants Among young Men With severe COVID-19. JAMA. 2020;324(7):1−11.
  • Liu B, Bao L, Wang L, et al. Anti-IFN-γ therapy alle-viates acute lung injury induced by severe influenza A (H1N1) pdm09 infection in mice. J Microbiol Immunol Infect. 2019;S1684-1182(18):1−8.