3,011
Views
7
CrossRef citations to date
0
Altmetric
Influenza Infections

Antigenic and molecular characterization of low pathogenic avian influenza A(H9N2) viruses in sub-Saharan Africa from 2017 through 2019

, , , , , , , , , , , , , , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 753-761 | Received 04 Nov 2020, Accepted 20 Mar 2021, Published online: 14 Apr 2021

References

  • Peiris M, Yuen KY, Leung CW, et al. Human infection with influenza H9N2. Lancet Lond Engl. 1999;354:916–917.
  • Peacock TP, James J, Sealy JE, et al. A global perspective on H9N2 avian influenza virus. Viruses. 2019;11:620.
  • Samy A, Naguib MM. Avian respiratory coinfection and Impact on avian influenza pathogenicity in domestic poultry: field and experimental findings. Vet Sci. 2018;5:23.
  • Cui L, Liu D, Shi W, et al. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nat Commun. 2014;5:1–9.
  • Liu D, Shi W, Gao GF. Poultry carrying H9N2 act as incubators for novel human avian influenza viruses. Lancet Lond Engl. 2014;383:869.
  • Shi W, Li W, Li X, et al. Phylogenetics of varied subtypes of avian influenza viruses in China: potential threat to humans. Protein Cell. 2014;5:253–257.
  • Nagy A, Mettenleiter TC, Abdelwhab EM. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol Infect. 2017;145:3320–3333.
  • Ekong PS, Fountain-Jones NM, Alkhamis MA. Spatiotemporal evolutionary epidemiology of H5N1 highly pathogenic avian influenza in West Africa and Nigeria, 2006–2015. Transbound Emerg Dis. 2018;65:e70–e82.
  • Fusaro A, Zecchin B, Vrancken B, et al. Disentangling the role of Africa in the global spread of H5 highly pathogenic avian influenza. Nat Commun. 2019;10:5310.
  • Couacy-Hymann E, Kouakou VA, Aplogan GL, et al. Surveillance for influenza viruses in poultry and swine, West Africa, 2006–2008. Emerg Infect Dis. 2012;18:1446–1452.
  • Fuller TL, Ducatez MF, Njabo KY, et al. Avian influenza surveillance in Central and West Africa, 2010–2014. Epidemiol Infect. 2015;143:2205–2212.
  • Jeevan T, Darnell D, Gradi EA, et al. A(H9N2) influenza viruses associated with chicken mortality in outbreaks in Algeria 2017. Influenza Other Respir Viruses. 2019;13:622–626.
  • Zecchin B, Minoungou G, Fusaro A, et al. Influenza A(H9N2) virus, Burkina Faso. Emerg Infect Dis. 2017;23:2118–2119.
  • Awuni JA, Bianco A, Dogbey OJ, et al. Avian influenza H9N2 subtype in Ghana: virus characterization and evidence of co-infection. Avian Pathol J WVPA. 2019;48:470–476.
  • Kariithi HM, Welch CN, Ferreira HL, et al. Genetic characterization and pathogenesis of the first H9N2 low pathogenic avian influenza viruses isolated from chickens in Kenyan live bird markets. Infect Genet Evol. 2020;78:104074.
  • Spackman E, Senne DA, Myers TJ, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:3256–3260.
  • Shabat M B, Meir R, Haddas R, et al. Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses. J Virol Methods. 2010;168:72–77.
  • Barman S, Turner JCM, Hasan MK, et al. Continuing evolution of highly pathogenic H5N1 viruses in Bangladeshi live poultry markets. Emerg Microbes Infect. 2019;8:650–661.
  • Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.
  • Rambaut A, Drummond AJ, Xie D, et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67:901–904.
  • Pedersen JC. Hemagglutination-inhibition test for avian influenza virus subtype identification and the detection and quantitation of serum antibodies to the avian influenza virus. Methods Mol Biol Clifton NJ. 2008;436:53–66.
  • Smith DJ, Lapedes AS, Jong JC, et al. Mapping the antigenic and genetic evolution of influenza virus. Science. 2004;305:371–376.
  • Reed LJ, Muench H, Muench HA, et al. A simple method of estimating fifty percent endpoints. Am J Epidemiol. 1938;27:493–497.
  • Li X, Shi J, Guo J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog. 2014;10:e1004508.
  • Wan H, Perez DR. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol. 2007;81:5181–5191.
  • Wan H, Sorrell EM, Song H, et al. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PloS One. 2008;3:e2923.
  • Hassan N, Kaoutar M, Sara G, et al. Focus on poultry in Morocco. AENSI Journals. 2017;11:1–8.
  • Santos JJS, Abente EJ, Obadan AO, et al. Plasticity of amino acid residue 145 near the receptor binding site of H3 swine influenza A viruses and its impact on receptor binding and antibody recognition. J Virol. 2019;93:e01413-18.
  • Peacock TP, Harvey WT, Sadeyen J-R, et al. The molecular basis of antigenic variation among A(H9N2) avian influenza viruses. Emerg Microbes Infect. 2018;7:176.
  • Belser JA, Sun X, Brock N, et al. Genetically and antigenically divergent influenza A(H9N2) viruses exhibit differential replication and transmission phenotypes in mammalian models. J Virol. 2020;94:e00451-20.
  • Su H, Zhao Y, Zheng L, et al. Effect of the selection pressure of vaccine antibodies on evolution of H9N2 avian influenza virus in chickens. AMB Express. 2020;10:98.
  • Shittu I, Bianco A, Gado D, et al. First detection of highly pathogenic H5N6 avian influenza virus on the African continent. Emerg Microbes Infect. 2020;9:886–888.