3,862
Views
26
CrossRef citations to date
0
Altmetric
Antimicrobial Agents

Dissemination and genome analysis of high-level ceftriaxone-resistant penA 60.001 Neisseria gonorrhoeae strains from the Guangdong Gonococcal antibiotics susceptibility Programme (GD-GASP), 2016–2019

ORCID Icon, , , , , , , , & show all
Pages 344-350 | Received 03 Sep 2021, Accepted 23 Nov 2021, Published online: 24 Jan 2022

References

  • Rowley J, Vander Hoorn S, Korenromp E, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548–562.
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327.
  • Ohnishi M, Golparian D, Shimuta K, et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother. 2011;55(7):3538–3545.
  • Lin EY, Adamson PC, Klausner JD, et al. And Vaccine development for antimicrobial-resistant Neisseria gonorrhoeae: Current strategies and future directions. Drugs. 2021;81(10):1153–1169.
  • Chen SC, Han Y, Yuan LF, et al. Identification of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, China. Emerg Infect Dis. 2019;25(7):1427–1429.
  • Xiu L, Yuan Q, Li Y, et al. Emergence of ceftriaxone-resistant Neisseria gonorrhoeae strains harbouring a novel mosaic penA gene in China. J Antimicrob Chemother. 2020;75(4):907–910.
  • Wang H, Wang Y, Yong G, et al. Emergence and genomic characterization of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in chengdu, China. J Antimicrob Chemother. 2020;75(9):2495–2498.
  • Yan J, Chen Y, Yang F, et al. High percentage of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone among isolates from a single hospital in hangzhou, China. J Antimicrob Chemother. 2021;76(4):936–939.
  • Qin X, Zhao Y, Chen W, et al. Changing antimicrobial susceptibility and molecular characterisation of Neisseria gonorrhoeae isolates in guangdong, China: in a background of rapidly rising epidemic. Int J Antimicrob Agents. 2019;54(6):757–765.
  • Thomas JC, Joseph SJ, Cartee JC, et al. Phylogenomic analysis reveals persistence of gonococcal strains with reduced-susceptibility to extended-spectrum cephalosporins and mosaic penA-34. Nat Commun. 2021;12(1):3801.
  • Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using gubbins. Nucleic Acids Res. 2015;43(3):e15.
  • Page AJ, Taylor B, Delaney AJ, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2(4):e000056.
  • Kozlov AM, Darriba D, Flouri T, et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453–4455.
  • Darriba D, Posada D, Kozlov AM, et al. ModelTest-NG: A New and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37(1):291–294.
  • Unemo M, Seifert HS, Hook EW, et al. Gonorrhoea. Nat Rev Dis Primers. 2019;5(1):79.
  • Sánchez-Busó L, Yeats CA, Taylor B, et al. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at pathogenwatch. Genome Med. 2021;13(1):61.
  • Yin YP, Han Y, Dai XQ, et al. Susceptibility of Neisseria gonorrhoeae to azithromycin and ceftriaxone in China: A retrospective study of national surveillance data from 2013 to 2016. PLoS Med. 2018;15(2):e1002499.
  • St Cyr S, Barbee L, Workowski KA, et al. Update to CDC's treatment guidelines for gonococcal infection, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(50):1911–1916.
  • Unemo M, Ross J, Serwin AB, et al. European guideline for the diagnosis and treatment of gonorrhoea in adults. Int J STD AIDS. 2020;2020:956462420949126.
  • Ropp PA, Hu M, Olesky M, et al. Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2002;46(3):769–777.
  • Shaskolskiy B, Dementieva E, Kandinov I, et al. Resistance of Neisseria gonorrhoeae isolates to beta-lactam antibiotics (benzylpenicillin and ceftriaxone) in russia, 2015-2017. PLoS One. 2019;14(7):e0220339.
  • Drlica K. Mechanism of fluoroquinolone action. Curr Opin Microbiol. 1999;2(5):504–508.
  • Singh A, Tomberg J, Nicholas RA, et al. Recognition of the β-lactam carboxylate triggers acylation of Neisseria gonorrhoeae penicillin-binding protein 2. J Biol Chem. 2019;294(38):14020–14032.
  • Chen SC, Yuan LF, Zhu XY, et al. Sustained transmission of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in China. J Antimicrob Chemother. 2020;75(9):2499–2502.
  • Chen XS. Proceedings of the 2017 International Forum on Gonococcal Infections and Resistance in shenzhen, China. Sex Transm Dis. 2018;45(10):e75–e79.
  • Wu HJ, Seib KL, Srikhanta YN, et al. Perr controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Mol Microbiol. 2006;60(2):401–416.
  • Ohneck EA, Zalucki YM, Johnson PJ, et al. A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. mBio. 2011;2(5):e00187–11.
  • Rudel T, Facius D, Barten R, et al. Role of pili and the phase-variable PilC protein in natural competence for transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1995;92(17):7986–7990.
  • Russell MA, Darzins A. The pilE gene product of pseudomonas aeruginosa, required for pilus biogenesis, shares amino acid sequence identity with the N-termini of type 4 prepilin proteins. Mol Microbiol. 1994;13(6):973–985.
  • Gong Z, Lai W, Liu M, et al. Novel genes related to ceftriaxone resistance found among ceftriaxone-resistant Neisseria gonorrhoeae strains selected In vitro. Antimicrob Agents Chemother. 2016;60(4):2043–2051.
  • Criss AK, Katz BZ, Seifert HS. Resistance of Neisseria gonorrhoeae to non-oxidative killing by adherent human polymorphonuclear leucocytes. Cell Microbiol. 2009;11(7):1074–1087.
  • Baarda BI, Zielke RA, Holm AK, et al. Comprehensive bioinformatic assessments of the variability of Neisseria gonorrhoeae Vaccine candidates. mSphere. 2021;6(1):e00977–20.
  • Noinaj N, Buchanan SK, Cornelissen CN. The transferrin-iron import system from pathogenic Neisseria species. Mol Microbiol. 2012;86(2):246–257.
  • Jean S, Juneau RA, Criss AK, et al. Neisseria gonorrhoeae evades calprotectin-mediated nutritional immunity and survives neutrophil extracellular traps by production of TdfH. Infect Immun. 2016;84(10):2982–2994.