2,478
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Different impact of bovine complement regulatory protein 46 (CD46bov) as a cellular receptor for members of the species Pestivirus H and Pestivirus G

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 60-72 | Received 01 Oct 2021, Accepted 23 Nov 2021, Published online: 04 Jan 2022

References

  • Moennig V, Becher P. Control of bovine viral diarrhea. Pathogens. 2018 Mar 8;7(1): Article no. 29.
  • Postel A, Austermann-Busch S, Petrov A, et al. Epidemiology, diagnosis and control of classical swine fever: recent developments and future challenges. Transbound Emerg Dis. 2018 May;65(Suppl 1):248–261.
  • Tautz N, Tews BA, Meyers G. The molecular Biology of pestiviruses. Adv Virus Res. 2015;93:47–160.
  • Smith DB, Meyers G, Bukh J, et al. Proposed revision to the taxonomy of the genus pestivirus, family flaviviridae. J Gen Virol. 2017 Aug;98(8):2106–2112.
  • King AMQ, Lefkowitz EJ, Mushegian AR, et al. Changes to taxonomy and the International code of virus classification and nomenclature ratified by the International committee on taxonomy of viruses. Arch Virol. 2018 Sep;163(9):2601–2631.
  • Postel A, Smith DB, Becher P. Proposed update to the taxonomy of pestiviruses: eight additional species within the genus pestivirus, family flaviviridae. Viruses. 2021;13(8):1542.
  • Schirrmeier H, Strebelow G, Depner K, et al. Genetic and antigenic characterization of an atypical pestivirus isolate, a putative member of a novel pestivirus species. J Gen Virol. 2004 Dec;85(Pt 12):3647–3652.
  • Xia H, Vijayaraghavan B, Belak S, et al. Detection and identification of the atypical bovine pestiviruses in commercial foetal bovine serum batches. PLoS One. 2011;6(12):e28553.
  • Stalder HP, Meier P, Pfaffen G, et al. Genetic heterogeneity of pestiviruses of ruminants in Switzerland. Prev Vet Med. 2005 Nov 15;72(1-2):37–41; discussion 215-9.
  • Stahl K, Kampa J, Alenius S, et al. Natural infection of cattle with an atypical 'HoBi'-like pestivirus--implications for BVD control and for the safety of biological products. Vet Res. 2007 May–Jun;38(3):517–523.
  • Haider N, Rahman MS, Khan SU, et al. Identification and epidemiology of a rare HoBi-like pestivirus strain in Bangladesh. Transbound Emerg Dis. 2014 Jun;61(3):193–198.
  • Mishra N, Rajukumar K, Pateriya A, et al. Identification and molecular characterization of novel and divergent HoBi-like pestiviruses from naturally infected cattle in India. Vet Microbiol. 2014 Nov 7;174(1-2):239–246.
  • Silveira S, Baumbach LF, Weber MN, et al. HoBi-like is the most prevalent ruminant pestivirus in northeastern Brazil. Transbound Emerg Dis. 2018 Feb;65(1):e113–e120.
  • Timurkan MO, Aydin H. Increased genetic diversity of BVDV strains circulating in eastern anatolia, Turkey: first detection of BVDV-3 in Turkey. Trop Anim Health Prod. 2019 Sep;51(7):1953–1961.
  • Shi H, Li H, Zhang Y, et al. Genetic diversity of bovine pestiviruses detected in backyard cattle farms between 2014 and 2019 in Henan province, China. Front Vet Sci. 2020;7:197.
  • Decaro N, Lucente MS, Mari V, et al. Atypical pestivirus and severe respiratory disease in calves, Europe. Emerg Infect Dis. 2011 Aug;17(8):1549–1552.
  • Chen M, Liu M, Liu S, et al. HoBi-like pestivirus infection leads to bovine death and severe respiratory disease in China. Transbound Emerg Dis. 2021 May;68(3):1069–1074.
  • Decaro N, Lanave G, Lucente MS, et al. Mucosal disease-like syndrome in a calf persistently infected by hobi-like pestivirus. J Clin Microbiol. 2014 Aug;52(8):2946–2954.
  • Weber MN, Mosena AC, Simoes SV, et al. Clinical presentation resembling mucosal disease associated with 'HoBi'-like pestivirus in a field outbreak. Transbound Emerg Dis. 2016 Feb;63(1):92–100.
  • Decaro N. HoBi-like pestivirus and reproductive disorders. Front Vet Sci. 2020;7:622447.
  • Decaro N, Losurdo M, Lucente MS, et al. Persistent infection caused by hobi-like pestivirus. J Clin Microbiol. 2013 Apr;51(4):1241–1243.
  • Decaro N, Lucente MS, Losurdo M, et al. HoBi-like pestivirus and its impact on cattle productivity. Transbound Emerg Dis. 2016 Oct;63(5):469–473.
  • Stahl K, Beer M, Schirrmeier H, et al. Atypical 'HoBi'-like pestiviruses–recent findings and implications thereof. Vet Microbiol. 2010 Apr 21;142(1-2):90–93.
  • Falcone E, Tollis M, Conti G. Bovine viral diarrhea disease associated with a contaminated vaccine. Vaccine. 1999 Oct 14;18(5–6):387–388.
  • Plowright W. Other virus diseases in relation to the JP15 programme. Joint Campaign Against Rinderpest, Proceedings of the 1st technical review meeting, phase IV, Mogadiscio, Organization of Africa; 1969. p. 19–23.
  • Schweizer M, Peterhans E. Pestiviruses. Annu Rev Anim Biosci. 2014 Feb;2:141–163.
  • Becher P, Avalos Ramirez R, Orlich M, et al. Genetic and antigenic characterization of novel Pestivirus genotypes: implications for classification. Virology. 2003 Jun 20;311(1):96–104.
  • Schmeiser S, Mast J, Thiel HJ, et al. Morphogenesis of pestiviruses: new insights from ultrastructural studies of strain giraffe-1. J Virol. 2014 Mar;88(5):2717–2724.
  • Grummer B, Grotha S, Greiser-Wilke I. Bovine viral diarrhoea virus is internalized by clathrin-dependent receptor-mediated endocytosis. J Vet Med B Infect Dis Vet Public Health. 2004 Dec;51(10):427–432.
  • Lecot S, Belouzard S, Dubuisson J, et al. Bovine viral diarrhea virus entry is dependent on clathrin-mediated endocytosis. J Virol. 2005 Aug;79(16):10826–10829.
  • Shi BJ, Liu CC, Zhou J, et al. Entry of classical swine fever virus into PK-15 cells via a pH-, dynamin-, and cholesterol-dependent, clathrin-mediated endocytic pathway that requires Rab5 and Rab7. J Virol. 2016 Oct 15;90(20):9194–9208.
  • Maurer K, Krey T, Moennig V, et al. CD46 is a cellular receptor for bovine viral diarrhea virus. J Virol. 2004 Feb;78(4):1792–1799.
  • Yamamoto H, Fara AF, Dasgupta P, et al. CD46: the 'multitasker' of complement proteins. Int J Biochem Cell Biol. 2013 Dec;45(12):2808–2820.
  • Krey T, Himmelreich A, Heimann M, et al. Function of bovine CD46 as a cellular receptor for bovine viral diarrhea virus is determined by complement control protein 1. J Virol. 2006 Apr;80(8):3912–3922.
  • Zezafoun H, Decreux A, Desmecht D. Genetic and splice variations of Bos Taurus CD46 shift cell permissivity to BVDV, the bovine pestivirus. Vet Microbiol. 2011 Sep 28;152(3-4):315–327.
  • Tscherne DM, Evans MJ, Macdonald MR, et al. Transdominant inhibition of bovine viral diarrhea virus entry. J Virol. 2008 Mar;82(5):2427–2436.
  • Riedel C, Chen HW, Reichart U, et al. Real time analysis of bovine viral diarrhea virus (BVDV) infection and Its dependence on bovine CD46. Viruses. 2020 Jan 17;12(1): Article no. 116.
  • Su A, Fu Y, Meens J, et al. Infection of polarized bovine respiratory epithelial cells by bovine viral diarrhea virus (BVDV). Virulence. 2021 Dec;12(1):177–187.
  • Hulst MM, van Gennip HG, Moormann RJ. Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein E(rns). J Virol. 2000 Oct;74(20):9553–9561.
  • Drager C, Beer M, Blome S. Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro. Arch Virol. 2015 Mar;160(3):739–746.
  • Eymann-Häni R, Leifer I, McCullough KC, et al. Propagation of classical swine fever virus in vitro circumventing heparan sulfate-adaptation. J Virol Methods. 2011 Sep;176(1-2):85–95.
  • Iqbal M, Flick-Smith H, McCauley JW. Interactions of bovine viral diarrhoea virus glycoprotein E(rns) with cell surface glycosaminoglycans. J Gen Virol. 2000 Feb;81(Pt 2):451–459.
  • Szillat KP, Koethe S, Wernike K, et al. A CRISPR/Cas9 generated bovine CD46-knockout cell line-A tool to elucidate the adaptability of bovine viral diarrhea viruses (BVDV). Viruses. 2020 Aug 6;12(8): Article no. 859.
  • Iqbal M, McCauley JW. Identification of the glycosaminoglycan-binding site on the glycoprotein E(rns) of bovine viral diarrhoea virus by site-directed mutagenesis. J Gen Virol. 2002 Sep;83(Pt 9):2153–2159.
  • Avalos-Ramirez R, Orlich M, Thiel HJ, et al. Evidence for the presence of two novel pestivirus species. Virology. 2001 Aug 1;286(2):456–465.
  • Becher P, Fischer N, Grundhoff A, et al. Complete genome sequence of bovine Pestivirus strain PG-2, a second member of the tentative Pestivirus species giraffe. Genome Announc. 2014 May 15;2(3):e00376-14.
  • Isken O, Postel A, Bruhn B, et al. CRISPR/Cas9-Mediated knockout of DNAJC14 verifies this chaperone as a pivotal host factor for RNA replication of pestiviruses. J Virol. 2019 Mar 1;93(5):e01714–18.
  • Cagatay GN, Antos A, Suckstorff O, et al. Porcine complement regulatory protein CD46 is a major receptor for atypical porcine pestivirus but not for classical swine fever virus. J Virol. 2021 Apr 12;95(9):e02186-20.
  • Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014 Aug;11(8):783–784.
  • Zufferey R, Nagy D, Mandel RJ, et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol. 1997 Sep;15(9):871–875.
  • Naldini L, Blömer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996 Apr 12;272(5259):263–267.
  • Peters W, Greiser-Wilke I, Moennig V, et al. Preliminary serological characterization of bovine viral diarrhoea virus strains using monoclonal antibodies. Vet Microbiol. 1986;12(3):195–200.
  • Cay B, Chappuis G, Coulibaly C, et al. Comparative analysis of monoclonal antibodies against pestiviruses: report of an international workshop. Vet Microbiol. 1989 Jun;20(2):123–129.
  • Pham HM, Argañaraz ER, Groschel B, et al. Lentiviral vectors interfering with virus-induced CD4 down-modulation potently block human immunodeficiency virus type 1 replication in primary lymphocytes. J Virol. 2004 Dec;78(23):13072–13081.
  • Spearman C. The method of ‘right and wrong cases’ (‘constant stimuli’) without gauss's formulae. Br J Psychol, 1904–1920. 1908;2(3):227–242.
  • Kärber G. Beitrag zur kollektiven behandlung pharmakologischer reihenversuche. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1931;162(4):480–483.
  • Konietschke F, Placzek M, Schaarschmidt F, et al. nparcomp: an R software package for nonparametric Multiple comparisons and simultaneous confidence intervals. J Stat Softw. 2015;64:1–17.
  • Chen J, He W-R, Shen L, et al. The laminin receptor is a cellular attachment receptor for classical swine fever virus. J Virol. 2015;89(9):4894–4906.
  • Li W, Wang G, Liang W, et al. Integrin beta3 is required in infection and proliferation of classical swine fever virus. PLoS One. 2014;9(10):e110911.
  • Yuan F, Li D, Li C, et al. ADAM17 is an essential attachment factor for classical swine fever virus. PLoS Pathog. 2021 Mar;17(3):e1009393.
  • Cagno V, Tseligka ED, Jones ST, et al. Heparan sulfate proteoglycans and viral attachment: true receptors or adaptation bias? Viruses. 2019 Jul 1;11(7): Article no. 596.