2,557
Views
7
CrossRef citations to date
0
Altmetric
Coronaviruses

Enhanced replication fitness of MERS-CoV clade B over clade A strains in camelids explains the dominance of clade B strains in the Arabian Peninsula

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 260-274 | Received 11 Aug 2021, Accepted 13 Dec 2021, Published online: 01 Feb 2022

References

  • Memish ZA, Perlman S, Van Kerkhove MD, et al. Middle East respiratory syndrome. Lancet. 2020;395:1063–1077.
  • Ministry of Health – Kingdom of Saudi Arabia. https://www.moh.gov.sa/en/CCC/events/national/Pages/2020.aspx (accessed 23 Jun2021).
  • WHO. Middle East respiratory syndrome coronavirus (MERS-CoV). https://www.who.int/emergencies/mers-cov/en/ (accessed 18 Jun2021).
  • Kim KH, Tandi TE, Choi JW, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. J Hosp Infect. 2017;95:207–213.
  • Oh M, Park WB, Park S-W, et al. Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. Korean J Intern Med. 2018;33:233–246.
  • Adney DR, Bielefeldt-Ohmann H, Hartwig AE, et al. Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas. Emerg Infect Dis. 2016;22:1031–1037.
  • Crameri G, Durr PA, Klein R, et al. Experimental infection and response to rechallenge of alpacas with Middle East respiratory syndrome coronavirus. Emerg Infect Dis. 2016;22:1071–1074.
  • Reusken CBEM, Schilp C, Raj VS, et al. MERS-CoV infection of alpaca in a region where MERS-CoV is endemic. Emerg Infect Dis. 2016;22:1129–1131.
  • David D, Rotenberg D, Khinich E, et al. Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels. One Heal. 2018;5:65–68.
  • Vergara-Alert J, van den Brand JMA, Widagdo W, et al. Livestock susceptibility to infection with Middle East respiratory syndrome coronavirus. Emerg Infect Dis. 2017;23:232–240.
  • Rodon J, Okba NMA, Te N, et al. Blocking transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) in llamas by vaccination with a recombinant spike protein. Emerg Microbes Infect. 2019;8:1593–1603.
  • Azhar EI, El-Kafrawy SA, Farraj SA, et al. Evidence for camel-to-Human transmission of MERS coronavirus. N Engl J Med. 2014;370:2499–2505.
  • Killerby ME, Biggs HM, Midgley CM, et al. Middle East respiratory syndrome coronavirus transmission. Emerg Infect Dis. 2020;26:191–198.
  • Chu DKW, Hui KPY, Perera RAPM, et al. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc Natl Acad Sci. 2018;115:3144–3149.
  • Kiambi S, Corman VM, Sitawa R, et al. Detection of distinct MERS-coronavirus strains in dromedary camels from Kenya, 2017. Emerg Microbes Infect. 2018;7:1–4.
  • Sabir JSM, Lam TT-Y, Ahmed MMM, et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science. 2016;351:81–84.
  • El-Kafrawy SA, Corman VM, Tolah AM, et al. Enzootic patterns of Middle East respiratory syndrome coronavirus in imported African and local Arabian dromedary camels: a prospective genomic study. Lancet Planet Heal. 2019;3:e521–e528.
  • Naeem A, Hamed ME, Alghoribi MF, et al. Molecular evolution and structural mapping of N-terminal domain in spike gene of Middle East respiratory syndrome coronavirus (MERS-CoV). Viruses. 2020;12:502.
  • Wang Y, Sun J, Li X, et al. Increased pathogenicity and virulence of Middle East respiratory syndrome coronavirus clade B in vitro and in vivo. J Virol. 2020;94:e00861-20.
  • Chan RWY, Chu DKW, Poon LLM, et al. Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: An in-vitro and ex-vivo study. Lancet Respir Med. 2014;2:813–822.
  • Yang Y, Zhang L, Geng H, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell. 2013;4:951–961.
  • Matthews KL, Coleman CM, van der Meer Y, et al. The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol. 2014;95:874–882.
  • Yang Y, Ye F, Zhu N, et al. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci Rep. 2015;5:17554.
  • Mielech AM, Kilianski A, Baez-Santos YM, et al. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology. 2014;450–451:64–70.
  • Lokugamage KG, Narayanan K, Nakagawa K, et al. Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin. J Virol. 2015;89:10970–10981.
  • Niemeyer D, Zillinger T, Muth D, et al. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol. 2013;87:12489–12495.
  • Comar CE, Goldstein SA, Li Y, et al. Antagonism of dsRNA-induced innate immune pathways by NS4a and NS4b accessory proteins during MERS coronavirus infection. MBio. 2019;10:e00319-19.
  • Siu K-L, Yeung ML, Kok K-H, et al. Middle East respiratory syndrome coronavirus 4a protein Is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol. 2014;88:4866–4876.
  • Te N, Rodon J, Ballester M, et al. Type I and III IFNs produced by the nasal epithelia and dimmed inflammation are features of alpacas resolving MERS-CoV infection. PLOS Pathog. 2021;17:e1009229.
  • van Boheemen S, de Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio. 2012;3:e00473-12.
  • Lamers MM, Raj S V., Shafei M, et al. Deletion variants of Middle East respiratory syndrome coronavirus from humans, Jordan, 2015. Emerg Infect Dis. 2016;22:716–719.
  • Corman VM, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Eurosurveillance. 2012;17:20285.
  • Coleman CM, Frieman MB. Growth and quantification of MERS-CoV infection. Curr Protoc Microbiol. 2015;37:1521–1529. doi:10.1002/9780471729259.mc15e02s37.
  • Te N, Vergara-Alert J, Lehmbecker A, et al. Co-localization of Middle East respiratory syndrome coronavirus (MERS-CoV) and dipeptidyl peptidase-4 in the respiratory tract and lymphoid tissues of pigs and llamas. Transbound Emerg Dis. 2019;66:831–841.
  • Holmes EC. The evolution and emergence of RNA viruses. New York (NY): Oxford University Press; 2009.
  • Simon-Loriere E, Holmes EC. Why do RNA viruses recombine? Nat. Rev. Microbiol. 2011;9:617–626.
  • Aljasim TA, Almasoud A, Aljami HA, et al. High rate of circulating MERS-CoV in Dromedary camels at slaughterhouses in Riyadh, 2019. Viruses. 2020;12:1215.
  • Gao J, Lu G, Qi J, et al. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J Virol. 2013;87:13134–13140.
  • Lau SKP, Wong ACP, Lau TCK, et al. Molecular evolution of MERS coronavirus: dromedaries as a recent intermediate host or long-time animal reservoir? Int J Mol Sci. 2017;18:2138.
  • Forni D, Filippi G, Cagliani R, et al. The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses. Sci Rep. 2015;5:14480.
  • Scobey T, Yount BL, Sims AC, et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci USA. 2013;110:16157–16162.