2,576
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Gene essentiality profiling reveals a novel determinant of stresses preventing protein aggregation in Salmonella

, , , , , , , , , & show all
Pages 1554-1571 | Received 16 Mar 2022, Accepted 19 May 2022, Published online: 04 Jun 2022

References

  • Crump JA, Sjolund-Karlsson M, Gordon MA, et al. Epidemiology, clinical presentation, Laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev. 2015 Oct;28(4):901–937. doi:10.1128/CMR.00002-15. PubMed PMID: 26180063; PubMed Central PMCID: PMCPMC4503790.
  • Harris JC, Dupont HL, Hornick RB. Fecal leukocytes in diarrheal illness. Ann Intern Med. 1972 May;76(5):697–703. doi:10.7326/0003-4819-76-5-697. PubMed PMID: 4554412.
  • Fields PI, Swanson RV, Haidaris CG, et al. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5189–5193. doi:10.1073/pnas.83.14.5189. PubMed PMID: 3523484; PubMed Central PMCID: PMCPMC323916.
  • Wesche AM, Gurtler JB, Marks BP, et al. Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J Food Prot. 2009 May;72(5):1121–1138. doi:10.4315/0362-028x-72.5.1121. PubMed PMID: 19517746.
  • Smith JL. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J Food Prot. 2003 Jul;66(7):1292–1303. doi:10.4315/0362-028x-66.7.1292. PubMed PMID: 12870767.
  • Broz P, Ohlson MB, Monack DM. Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes. 2012 Mar-Apr;3(2):62–70. doi:10.4161/gmic.19141. PubMed PMID: 22198618; PubMed Central PMCID: PMCPMC3370950.
  • Foster JW, Spector MP. How Salmonella survive against the odds. Annu Rev Microbiol. 1995;49:145–174. doi:10.1146/annurev.mi.49.100195.001045. PubMed PMID: 8561457.
  • Goodman AL, McNulty NP, Zhao Y, et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe. 2009 Sep 17;6(3):279–289. doi:10.1016/j.chom.2009.08.003. PubMed PMID: 19748469; PubMed Central PMCID: PMC2895552.
  • van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods. 2009 Oct;6(10):767–772. doi:10.1038/nmeth.1377. PubMed PMID: 19767758; PubMed Central PMCID: PMC2957483.
  • Khatiwara A, Jiang T, Sung SS, et al. Genome scanning for conditionally essential genes in Salmonella enterica serotype typhimurium. Appl Environ Microbiol. 2012 May;78(9):3098–3107. doi:10.1128/AEM.06865-11. PubMed PMID: 22367088; PubMed Central PMCID: PMCPMC3346488.
  • Chaudhuri RR, Morgan E, Peters SE, et al. Comprehensive assignment of roles for Salmonella typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet. 2013 Apr;9(4):e1003456, doi:10.1371/journal.pgen.1003456. PubMed PMID: 23637626; PubMed Central PMCID: PMCPMC3630085.
  • Karash S, Liyanage R, Qassab A, et al. A comprehensive assessment of the genetic determinants in Salmonella Typhimurium for resistance to hydrogen peroxide using proteogenomics. Sci Rep. 2017 Dec 6;7(1):17073, doi:10.1038/s41598-017-17149-9. PubMed PMID: 29213059; PubMed Central PMCID: PMCPMC5719062.
  • Mandal RK, Kwon YM. Global screening of Salmonella enterica serovar Typhimurium genes for desiccation survival. Front Microbiol. 2017;8:1723, doi:10.3389/fmicb.2017.01723. PubMed PMID: 28943871; PubMed Central PMCID: PMCPMC5596212.
  • Karash S, Kwon YM. Iron-dependent essential genes in Salmonella Typhimurium. BMC Genomics. 2018 Aug 14;19(1):610, doi:10.1186/s12864-018-4986-1. PubMed PMID: 30107784; PubMed Central PMCID: PMCPMC6092869.
  • Canals R, Chaudhuri RR, Steiner RE, et al. The fitness landscape of the African Salmonella Typhimurium ST313 strain D23580 reveals unique properties of the pBT1 plasmid. PLoS Pathog. 2019 Sep;15(9):e1007948, doi:10.1371/journal.ppat.1007948. PubMed PMID: 31560731; PubMed Central PMCID: PMCPMC6785131.
  • Bjarnason J, Southward CM, Surette MG. Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol. 2003 Aug;185(16):4973–4982. doi:10.1128/JB.185.16.4973-4982.2003. PubMed PMID: 12897017; PubMed Central PMCID: PMCPMC166456.
  • Bourret TJ, Liu L, Shaw JA, et al. Magnesium homeostasis protects Salmonella against nitrooxidative stress. Sci Rep. 2017 Nov 8;7(1):15083, doi:10.1038/s41598-017-15445-y. PubMed PMID: 29118452; PubMed Central PMCID: PMCPMC5678156.
  • Lin J, Lee IS, Frey J, et al. Comparative analysis of extreme acid survival in Salmonella Typhimurium, shigella flexneri, and Escherichia coli. J Bacteriol. 1995 Jul;177(14):4097–4104. doi:10.1128/jb.177.14.4097-4104.1995. PubMed PMID: 7608084; PubMed Central PMCID: PMCPMC177142.
  • Spector MP, Cubitt CL. Starvation-inducible loci of Salmonella typhimurium: regulation and roles in starvation-survival [Research support. Non-U.S. Gov't]. Mol Microbiol. 1992;6(11):1467–1476. doi:10.1111/j.1365-2958.1992.tb00867.x. PubMed PMID: MEDLINE:1320726; English.
  • Goodman AL, Wu M, Gordon JI. Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat Protoc. 2011 Nov 17;6(12):1969–1980. doi:10.1038/nprot.2011.417. PubMed PMID: 22094732; PubMed Central PMCID: PMC3310428.
  • Tomoyasu T, Mogk A, Langen H, et al. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol. 2001 Apr;40(2):397–413. doi:10.1046/j.1365-2958.2001.02383.x. PubMed PMID: 11309122.
  • Senior AE. ATP synthesis by oxidative phosphorylation. Physiol Rev. 1988 Jan;68(1):177–231. doi:10.1152/physrev.1988.68.1.177. PubMed PMID: 2892214.
  • Parra-Lopez C, Baer MT, Groisman EA. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J. 1993 Nov;12(11):4053–4062. PubMed PMID: 8223423; PubMed Central PMCID: PMCPMC413698.
  • Mason KM, Raffel FK, Ray WC, et al. Heme utilization by nontypeable Haemophilus influenzae is essential and dependent on Sap transporter function. J Bacteriol. 2011 May;193(10):2527–2535. doi:10.1128/JB.01313-10. PubMed PMID: 21441512; PubMed Central PMCID: PMCPMC3133164.
  • Poole RK, Hatch L, Cleeter MW, et al. Cytochrome bd biosynthesis in Escherichia coli: the sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter. Mol Microbiol. 1993 Oct;10(2):421–430. PubMed PMID: 7934832.
  • Pittman MS, Robinson HC, Poole RK. A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem. 2005 Sep 16;280(37):32254–32261. doi:10.1074/jbc.M503075200. PubMed PMID: 16040611.
  • Holyoake LV, Hunt S, Sanguinetti G, et al. CydDC-mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress. Biochem J. 2016 Mar 15;473(6):693–701. doi:10.1042/BJ20150536. PubMed PMID: 26699904; PubMed Central PMCID: PMCPMC4785604.
  • Husna AU, Wang N, Cobbold SA, et al. Methionine biosynthesis and transport are functionally redundant for the growth and virulence of Salmonella Typhimurium. J Biol Chem. 2018 Jun 15;293(24):9506–9519. doi:10.1074/jbc.RA118.002592. PubMed PMID: 29720401; PubMed Central PMCID: PMCPMC6005444.
  • Ochman H, Soncini FC, Solomon F, et al. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7800–7804. doi:10.1073/pnas.93.15.7800. PubMed PMID: 8755556; PubMed Central PMCID: PMCPMC38828.
  • Kroger C, Colgan A, Srikumar S, et al. An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe. 2013 Dec 11;14(6):683–695. doi:10.1016/j.chom.2013.11.010. PubMed PMID: 24331466.
  • Slepenkov SV, Witt SN. The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol Microbiol. 2010;45(5):1197–1206.
  • Fourie KR, Wilson HL. Understanding GroEL and DnaK stress response proteins as antigens for bacterial diseases. Vaccines (Basel). 2020 Dec 17;8(4):773. doi:10.3390/vaccines8040773. PubMed PMID: 33348708; PubMed Central PMCID: PMCPMC7767184.
  • van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol. 2005 Apr;5(4):318–330. doi:10.1038/nri1593. PubMed PMID: 15803151.
  • Ikeuchi Y, Shigi N, Kato J, et al. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol Cell. 2006 Jan 6;21(1):97–108. doi:10.1016/j.molcel.2005.11.001. PubMed PMID: 16387657.
  • Nedialkova DD, Leidel SA. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell. 2015 Jun 18;161(7):1606–1618. doi:10.1016/j.cell.2015.05.022. PubMed PMID: 26052047; PubMed Central PMCID: PMCPMC4503807.
  • Gragerov A, Nudler E, Komissarova N, et al. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10341–4. doi:10.1073/pnas.89.21.10341. PubMed PMID: 1359538; PubMed Central PMCID: PMCPMC50334.
  • Smith GR, Roberts CM, Schultz DW. Activity of Chi recombinational hotspots in Salmonella typhimurium. Genetics. 1986 Mar;112(3):429–439. PubMed PMID: 2937685; PubMed Central PMCID: PMCPMC1202755.
  • Vogel J. A rough guide to the non-coding RNA world of salmonella. Mol Microbiol. 2009 Jan;71(1):1–11. doi:10.1111/j.1365-2958.2008.06505.x. PubMed PMID: 19007416.
  • Papenfort K, Vogel J. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol. 2014;4:91, doi:10.3389/fcimb.2014.00091. PubMed PMID: 25077072; PubMed Central PMCID: PMCPMC4098024.
  • Westermann AJ, Forstner KU, Amman F, et al. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature. 2016 Jan 28;529(7587):496–501. doi:10.1038/nature16547. PubMed PMID: 26789254.
  • Ren J, Sang Y, Qin R, et al. 6S RNA is involved in acid resistance and invasion of epithelial cells in Salmonella enterica serovar typhimurium. Future Microbiol. 2017 Sep;12:1045–1057. doi:10.2217/fmb-2017-0055. PubMed PMID: 28796533.
  • Chan K, Kim CC, Falkow S. Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice. Infect Immun. 2005 Sep;73(9):5438–5449. doi:10.1128/IAI.73.9.5438-5449.2005. PubMed PMID: 16113260; PubMed Central PMCID: PMCPMC1231100.
  • Bjur E, Eriksson-Ygberg S, Aslund F, et al. Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica Serovar Typhimurium. Infect Immun. 2006 Sep;74(9):5140–5151. doi:10.1128/IAI.00449-06. PubMed PMID: 16926406; PubMed Central PMCID: PMCPMC1594827.
  • Yasir M, Turner AK, Bastkowski S, et al. TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance. Genome Res. 2020 Feb;30(2):239–249. doi:10.1101/gr.254391.119. PubMed PMID: 32051187; PubMed Central PMCID: PMCPMC7050523.
  • Colgan AM, Quinn HJ, Kary SC, et al. Negative supercoiling of DNA by gyrase is inhibited in Salmonella enterica serovar Typhimurium during adaptation to acid stress. Mol Microbiol. 2018 Mar;107(6):734–746. doi:10.1111/mmi.13911. PubMed PMID: 29352745.
  • Muller-Herbst S, Wustner S, Muhlig A, et al. Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiology (Reading). 2014 Apr;160(Pt 4):752–765. doi:10.1099/mic.0.075242-0. PubMed PMID: 24451174.
  • Grosser MR, Paluscio E, Thurlow LR, et al. Genetic requirements for Staphylococcus aureus nitric oxide resistance and virulence. PLoS Pathog. 2018 Mar;14(3):e1006907, doi:10.1371/journal.ppat.1006907. PubMed PMID: 29554137; PubMed Central PMCID: PMCPMC5884563.
  • Nakamoto RK, Ketchum CJ, Kuo PH, et al. Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase. Biochim Biophys Acta. 2000 May 31;1458(2-3):289–299. doi:10.1016/s0005-2728(00)00081-5. PubMed PMID: 10838045.
  • Green GN, Kranz RG, Lorence RM, et al. Identification of subunit I as the cytochrome b558 component of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem. 1984 Jun 25;259(12):7994–7997. PubMed PMID: 6376497.
  • Giuffre A, Borisov VB, Arese M, et al. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178–1187. doi:10.1016/j.bbabio.2014.01.016. PubMed PMID: 24486503.
  • Shigi N. Biosynthesis and functions of sulfur modifications in tRNA. Front Genet. 2014;5:67, doi:10.3389/fgene.2014.00067. PubMed PMID: 24765101; PubMed Central PMCID: PMCPMC3980101.
  • Kambampati R, Lauhon CT. MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry. 2003 Feb 4;42(4):1109–1117. doi:10.1021/bi026536+. PubMed PMID: 12549933.
  • Elseviers D, Petrullo LA, Gallagher PJ. Novel E. coli mutants deficient in biosynthesis of 5-methylaminomethyl-2-thiouridine. Nucleic Acids Res. 1984 Apr 25;12(8):3521–3534. doi:10.1093/nar/12.8.3521. PubMed PMID: 6427754; PubMed Central PMCID: PMCPMC318766.
  • Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev. 2020 Jan 1;44(1):54–72. doi:10.1093/femsre/fuz026. PubMed PMID: 31633151; PubMed Central PMCID: PMCPMC7053576.
  • Schramm FD, Schroeder K, Alvelid J, et al. Growth-driven displacement of protein aggregates along the cell length ensures partitioning to both daughter cells in caulobacter crescentus. Mol Microbiol. 2019 Jun;111(6):1430–1448. doi:10.1111/mmi.14228. PubMed PMID: 30779464; PubMed Central PMCID: PMCPMC6850343.
  • Mogk A, Bukau B, Kampinga HH. Cellular handling of protein aggregates by disaggregation machines. Mol Cell. 2018 Jan 18;69(2):214–226. doi:10.1016/j.molcel.2018.01.004. PubMed PMID: 29351843.
  • Anderson DG, Churchill JJ, Kowalczykowski SC. Chi-activated RecBCD enzyme possesses 5'–>3’ nucleolytic activity, but RecBC enzyme does not: evidence suggesting that the alteration induced by Chi is not simply ejection of the RecD subunit. Genes Cells. 1997 Feb;2(2):117–128. doi:10.1046/j.1365-2443.1997.1130311.x. PubMed PMID: 9167969.
  • Dermic D, Zahradka D, Petranovic M. Exonuclease requirements for recombination of lambda-phage in recD mutants of Escherichia coli. Genetics. 2006 Aug;173(4):2399–2402. doi:10.1534/genetics.106.060426. PubMed PMID: 16702415; PubMed Central PMCID: PMCPMC1569708.
  • Cano DA, Pucciarelli MG, Garcia-del Portillo F, et al. Role of the RecBCD recombination pathway in Salmonella virulence. J Bacteriol. 2002 Jan;184(2):592–595. doi:10.1128/jb.184.2.592-595.2002. PubMed PMID: 11751841; PubMed Central PMCID: PMCPMC139588.
  • Durand S, Storz G. Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol. 2010 Mar;75(5):1215–1231. doi:10.1111/j.1365-2958.2010.07044.x. PubMed PMID: 20070527; PubMed Central PMCID: PMCPMC2941437.