2,886
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Comparative miRNA transcriptomics of macaques and mice reveals MYOC is an inhibitor for Cryptococcus neoformans invasion into the brain

ORCID Icon, , , , , , , , , , , , , , , , , , , , & show all
Pages 1572-1585 | Received 27 Mar 2022, Accepted 19 May 2022, Published online: 04 Jun 2022

Reference

  • Iyer KR, Revie NM, Fu C, et al. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol. 2021;19(7):454–466. doi:10.1038/s41579-021-00511-0
  • Stott KE, Loyse A, Jarvis JN, et al. Cryptococcal meningoencephalitis: time for action. Lancet Infect Dis. 2021;21(9):e259–e271. doi:10.1016/S1473-3099(20)30771-4
  • Mpoza E, Rajasingham R, Tugume L, et al. Cryptococcal antigenemia in human immunodeficiency virus Antiretroviral therapy-experienced Ugandans with virologic failure. Clin Infect Dis. 2020;71(7):1726–1731. doi:10.1093/cid/ciz1069
  • Chen M, Xu N, Xu J. Cryptococcus neoformans meningitis cases Among China's HIV-infected population may have been severely under-reported. Mycopathologia. 2020;185(6):971–974. doi:10.1007/s11046-020-00491-4
  • MacDougall L, Kidd SE, Galanis E, et al. Spread of Cryptococcus gattii in British Columbia, Canada, and detection in the pacific northwest, USA. Emerg Infect Dis. 2007;13(1):42–50. doi:10.3201/eid1301.060827
  • Huang C, Tsui CKM, Chen M, et al. Emerging Cryptococcus gattii species complex infections in guangxi, southern China. PLoS Negl Trop Dis. 2020;14(8):e0008493.
  • Bielska E, Sisquella MA, Aldeieg M, et al. Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nat Commun. 2018;9(1):1556. doi:10.1038/s41467-018-03991-6
  • Fang W, Zhang L, Liu J, et al. Tuberculosis/cryptococcosis co-infection in China between 1965 and 2016. Emerg Microbes Infect. 2017;6(8):e73.
  • Shen Y, Zheng F, Sun D, et al. Epidemiology and clinical course of COVID-19 in Shanghai, China. Emerg Microbes Infect. 2020;9(1):1537–1545. doi:10.1080/22221751.2020.1787103
  • Cafardi J, Haas D, Lamarre T, et al. Opportunistic fungal infection associated with COVID-19. Open Forum Infect Dis. 2021;8(7):ofab016. doi:10.1093/ofid/ofab016
  • Song G, Liang G, Liu W. Fungal Co-infections associated with global COVID-19 pandemic: A clinical and diagnostic perspective from China. Mycopathologia. 2020;185(4):599–606. doi:10.1007/s11046-020-00462-9
  • Traver EC, Sánchez MM. Pulmonary aspergillosis and cryptococcosis as a complication of COVID-19. Medical Mycology Case Reports; 2022.
  • Charlier C, Nielsen K, Daou S, et al. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009;77(1):120–127. doi:10.1128/IAI.01065-08
  • Santiago-Tirado FH, Onken MD, Cooper JA, et al. Trojan Horse transit contributes to blood-brain barrier crossing of a eukaryotic pathogen. mBio. 2017;8(1):e02183–16. doi:10.1128/mBio.02183-16
  • Scherer AK, Blair BA, Park J, et al. Redundant Trojan horse and endothelial-circulatory mechanisms for host-mediated spread of Candida albicans yeast. PLoS Pathog. 2020;16(8):e1008414. doi:10.1371/journal.ppat.1008414
  • Sorrell TC, Juillard PG, Djordjevic JT, et al. Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265. Microbes Infect. 2016;18(1):57–67. doi:10.1016/j.micinf.2015.08.017
  • Strickland AB, Shi M. Mechanisms of fungal dissemination. Cell Mol Life Sci. 2021;78(7):3219–3238. doi:10.1007/s00018-020-03736-z
  • Soares E A, Lazera MDS, Wanke B, et al. Mortality by cryptococcosis in Brazil from 2000 to 2012: A descriptive epidemiological study. PLoS Negl Trop Dis. 2019;13(7):e0007569.
  • Akaihe CL, Nweze EI. Epidemiology of Cryptococcus and cryptococcosis in Western Africa. Mycoses. 2021;64(1):4–17. doi:10.1111/myc.13188
  • Rajasingham R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–881. doi:10.1016/S1473-3099(17)30243-8
  • Walsh D, Naghavi MH. Exploitation of Cytoskeletal networks during Early viral infection. Trends Microbiol. 2019;27(1):39–50. doi:10.1016/j.tim.2018.06.008
  • Li H, Li Y, Sun T, et al. Unveil the transcriptional landscape at the cryptococcus-host axis in mice and nonhuman primates. PLoS Negl Trop Dis. 2019;13(7):e0007566.
  • Chen SHM, Stins MF, Huang SH, et al. Cryptococcus neoformans induces alterations in the cytoskeleton of human brain microvascular endothelial cells. J Med Microbiol. 2003;52(11):961–970. doi:10.1099/jmm.0.05230-0
  • Li H, Li Y, Sun T, et al. Integrative proteome and acetylome analyses of murine responses to Cryptococcus neoformans infection. Front Microbiol. 2020;11:575. doi:10.3389/fmicb.2020.00575
  • Li Y, Li H, Sui M, et al. Fungal acetylome comparative analysis identifies an essential role of acetylation in human fungal pathogen virulence. Commun Biol. 2019;2:154. doi:10.1038/s42003-019-0419-1
  • Holmer SM, Evans KS, Asfaw YG, et al. Impact of surfactant protein D, interleukin-5, and eosinophilia on cryptococcosis. Infect Immun. 2014;82(2):683–693. doi:10.1128/IAI.00855-13
  • Muller U, Stenzel W, Kohler G, et al. IL-13 Induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during Pulmonary infection of mice with Cryptococcus neoformans. J Immunol. 2007;179(8):5367–5377. doi:10.4049/jimmunol.179.8.5367
  • Angkasekwinai P, Sringkarin N, Supasorn O, et al. Cryptococcus gattii infection dampens Th1 and Th17 responses by attenuating dendritic cell function and pulmonary chemokine expression in the immunocompetent hosts. Infect Immun. 2014;82(9):3880–3890. doi:10.1128/IAI.01773-14
  • Marais S, Meintjes G, Lesosky M, et al. Interleukin-17 mediated differences in the pathogenesis of HIV-1-associated tuberculous and cryptococcal meningitis. AIDS. 2016;30(3):395–404.
  • Murdock BJ, Huffnagle GB, Olszewski MA, et al. Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect Immun. 2014;82(3):937–948. doi:10.1128/IAI.01477-13
  • Wozniak KL, Hardison SE, Kolls JK, et al. Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS One. 2011;6(2):e17204. doi:10.1371/journal.pone.0017204
  • Chen H, Jin Y, Chen H, et al. MicroRNA-mediated inflammatory responses induced by Cryptococcus neoformans are dependent on the NF-kappaB pathway in human monocytes. Int J Mol Med. 2017;39(6):1525–1532. doi:10.3892/ijmm.2017.2951
  • Liu M, Zhang Z, Ding C, et al. Transcriptomic analysis of Extracellular RNA governed by the endocytic adaptor protein Cin1 of Cryptococcus deneoformans. Front Cell Infect Microbiol. 2020;10:256. doi:10.3389/fcimb.2020.00256
  • Zhang L, Zhang K, Fang W, et al. CircRNA-1806 decreases T cell apoptosis and prolongs survival of mice after Cryptococcal infection by sponging miRNA-126. Front Microbiol. 2020;11:596440.
  • Jin Y, Yao G, Wang Y, et al. MiR-30c-5p mediates inflammatory responses and promotes microglia survival by targeting eIF2alpha during Cryptococcus neoformans infection. Microb Pathog. 2020;141:103959. doi:10.1016/j.micpath.2019.103959
  • Busk PK. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinform. 2014;15:29. doi:10.1186/1471-2105-15-29
  • Sticht C, De La Torre C, Parveen A, et al. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One. 2018;13(10):e0206239. doi:10.1371/journal.pone.0206239
  • Kern F, Fehlmann T, Solomon J, et al. miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. Nucleic Acids Res. 2020;48(W1):W521–W528. doi:10.1093/nar/gkaa309
  • Yi F, Guo J, Dabbagh D, et al. Discovery of novel small-molecule inhibitors of LIM domain kinase for inhibiting HIV-1. J Virol. 2017;91(13):e02418–16.
  • Kwon HS, Tomarev SI. Myocilin, a glaucoma-associated protein, promotes cell migration through activation of integrin-focal adhesion Kinase-serine/threonine Kinase signaling pathway. J Cell Physiol. 2011;226(12):3392–3402. doi:10.1002/jcp.22701
  • Kim JC, Crary B, Chang YC, et al. Cryptococcus neoformans activates RhoGTPase proteins followed by protein kinase C, focal adhesion kinase, and ezrin to promote traversal across the blood-brain barrier. J Biol Chem. 2012;287(43):36147–36157. doi:10.1074/jbc.M112.389676
  • Zhang C, Chen F, Liu X, et al. Gliotoxin induces cofilin phosphorylation to promote actin cytoskeleton dynamics and internalization of Aspergillus fumigatus into type II human Pneumocyte cells. Front Microbiol. 2019;10:1345. doi:10.3389/fmicb.2019.01345
  • Kanjanapruthipong T, Sukphopetch P, Reamtong O, et al. Cytoskeletal alteration is an early cellular response in Pulmonary epithelium infected with Aspergillus fumigatus rather than scedosporium apiospermum Microb Ecol. 2022;83(1):216–235.
  • Johnston SA, May RC. The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation. PLoS Pathog. 2010;6(8):e1001041. doi:10.1371/journal.ppat.1001041
  • Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18(1):54. doi:10.1186/s12931-017-0544-7
  • Meyerovitch J, Farfel Z, Sack J, et al. Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J Biol Chem. 1987;262(14):6658–6662. doi:10.1016/S0021-9258(18)48292-0
  • Kogan TV, Jadoun J, Mittelman L, et al. Involvement of secreted Aspergillus fumigatus proteases in disruption of the actin fiber cytoskeleton and loss of Focal Adhesion sites in infected A549 lung pneumocytes. J Infect Dis. 2004;189(11):1965–1973. doi:10.1086/420850
  • He S, Fu Y, Guo J, et al. Cofilin hyperactivation in HIV infection and targeting the cofilin pathway using an anti-α4 β7 integrin antibody. Sci Adv. 2019;5(1):eaat7911. doi:10.1126/sciadv.aat7911
  • Montoya MC, Magwene PM, Perfect JR. Associations between Cryptococcus genotypes, phenotypes, and clinical parameters of human disease: a review. J Fungi. 2021;7(4):260. doi:10.3390/jof7040260
  • Molloy SF, Kanyama C, Heyderman RS, et al. Antifungal combinations for treatment of Cryptococcal meningitis in Africa. N Engl J Med. 2018;378(11):1004–1017. doi:10.1056/NEJMoa1710922
  • Meya D, Rajasingham R, Nalintya E, et al. Preventing cryptococcosis-shifting the paradigm in the Era of highly active Antiretroviral therapy. Curr Trop Med Rep. 2015;2(2):81–89. doi:10.1007/s40475-015-0045-z
  • Tugume L, Rhein J, Hullsiek KH, et al. HIV-associated cryptococcal meningitis occurring at relatively higher CD4 counts. J Infect Dis. 2019;219(6):877–883. doi:10.1093/infdis/jiy602
  • Fisher JF, Valencia-Rey PA, Davis WB. Pulmonary cryptococcosis in the immunocompetent patient-many questions, some answers. Open Forum Infect Dis. 2016;3(3):ofw167. doi:10.1093/ofid/ofw167
  • Yoder A, Yu D, Dong L, et al. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell. 2008;134(5):782–792. doi:10.1016/j.cell.2008.06.036
  • Seoane PI, Taylor-Smith LM, Stirling D, et al. Viral infection triggers interferon-induced expulsion of live Cryptococcus neoformans by macrophages. PLoS Pathog. 2020;16(2):e1008240. doi:10.1371/journal.ppat.1008240
  • Mertts M, Garfield S, Tanemoto K, et al. Identification of the region in the N-terminal domain responsible for the cytoplasmic localization of Myoc/Tigr and its association with microtubules. Lab Invest. 1999;79(10):1237–1245.
  • Sohn S, Hur W, Joe MK, et al. Expression of wild-type and truncated myocilins in trabecular meshwork cells: their subcellular localizations and cytotoxicities. Invest Ophthalmol Visual Sci. 2002;43(12):3680–3685.
  • Shen X, Koga T, Park BC, et al. Rho GTPase and cAMP/protein kinase A signaling mediates myocilin-induced alterations in cultured human trabecular meshwork cells. J Biol Chem. 2008;283(1):603–612. doi:10.1074/jbc.M708250200
  • Wentz-Hunter K, Kubota R, Shen X, et al. Extracellular myocilin affects activity of human trabecular meshwork cells. J Cell Physiol. 2004;200(1):45–52. doi:10.1002/jcp.10478
  • Wentz-Hunter K, Shen X, Okazaki K, et al. Overexpression of myocilin in cultured human trabecular meshwork cells. Exp Cell Res. 2004;297(1):39–48. doi:10.1016/j.yexcr.2004.02.024