1,736
Views
3
CrossRef citations to date
0
Altmetric
Zika

Zika virus infects human osteoclasts and blocks differentiation and bone resorption

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1621-1634 | Received 31 Jan 2022, Accepted 31 May 2022, Published online: 14 Jun 2022

References

  • Cao-Lormeau VM, Roche C, Teissier A, et al. Zika virus, French polynesia, South pacific, 2013. Emerg Infect Dis. 2014;20(6):1085–1086. doi:10.3201/eid2006.140138
  • Duffy MR, Chen TH, Hancock WT, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360(24):2536–2543. doi:10.1056/NEJMoa0805715
  • Lowe R, Barcellos C, Brasil P, et al. The Zika virus epidemic in Brazil: from discovery to future implications. Int J Environ Res Public Health. 2018;15(1). doi:10.3390/ijerph15010096
  • Colombo TE, Estofolete CF, Reis AFN, et al. Clinical, laboratory and virological data from suspected ZIKV patients in an endemic arbovirus area. J Clin Virol. 2017;96:20–25. doi:10.1016/j.jcv.2017.09.002
  • Chan JF, Choi GK, Yip CC, et al. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. J Infect. 2016;72(5):507–524. doi:10.1016/j.jinf.2016.02.011
  • Martines RB, Bhatnagar J, de Oliveira Ramos AM, et al. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet. 2016;388(10047):898–904. doi:10.1016/S0140-6736(16)30883-2
  • Tang H, Hammack C, Ogden SC, et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18(5):587–590. doi:10.1016/j.stem.2016.02.016
  • Li C, Xu D, Ye Q, et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell. 2016;19(5):672. doi:10.1016/j.stem.2016.10.017
  • Li H, Saucedo-Cuevas L, Regla-Nava JA, et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell. 2016;19(5):593–598. doi:10.1016/j.stem.2016.08.005
  • Wu KY, Zuo GL, Li XF, et al. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res. 2016;26(6):645–654. doi:10.1038/cr.2016.58
  • van der Eijk AA, van Genderen PJ, Verdijk RM, et al. Miscarriage associated with Zika virus infection. N Engl J Med. 2016;375(10):1002–1004. doi:10.1056/NEJMc1605898
  • Mumtaz N, Koedam M, van den Doel PB, et al. Zika virus infection perturbs osteoblast function. Sci Rep. 2018;8(1):16975. doi:10.1038/s41598-018-35422-3
  • Siddiqui JA, Partridge NC. Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology (Bethesda). 2016;31(3):233–245.
  • Cui YC, Wu Q, Teh SW, et al. Bone breaking infections - A focus on bacterial and mosquito-borne viral infections. Microb Pathog. 2018;122:130–136. doi:10.1016/j.micpath.2018.06.021
  • Al-Namnam NM, Nambiar P, Shanmuhasuntharam P, et al. A case of dengue-related osteonecrosis of the maxillary dentoalveolar bone. Aust Dent J. 2017;62(2):228–232. doi:10.1111/adj.12472
  • Watson AA, Lebedev AA, Hall BA, et al. Structural flexibility of the macrophage dengue virus receptor CLEC5A: implications for ligand binding and signaling. J Biol Chem. 2011;286(27):24208–24218. doi:10.1074/jbc.M111.226142
  • Suhrbier A, La Linn M. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr Opin Rheumatol. 2004;16(4):374–379. doi:10.1097/01.bor.0000130537.76808.26
  • Raynaud-Messina B, Verollet C, Maridonneau-Parini I. The osteoclast, a target cell for microorganisms. Bone. 2019;127:315–323. doi:10.1016/j.bone.2019.06.023
  • Arai F, Miyamoto T, Ohneda O, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999;190(12):1741–1754. doi:10.1084/jem.190.12.1741
  • Jacome-Galarza CE, Percin GI, Muller JT, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568(7753):541–545. doi:10.1038/s41586-019-1105-7
  • Nikitina E, Larionova I, Choinzonov E, et al. Monocytes and macrophages as viral targets and reservoirs. Int J Mol Sci. 2018;19(9). doi:10.3390/ijms19092821
  • Wimalasiri-Yapa B, Yapa HE, Huang X, et al. Zika virus and arthritis/arthralgia: a systematic review and meta-analysis. Viruses. 2020;12(10). doi:10.3390/v12101137
  • Wilder-Smith A, Ooi EE, Vasudevan SG, et al. Update on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine development. Curr Infect Dis Rep. 2010;12(3):157–164. doi:10.1007/s11908-010-0102-7
  • Simmons CP, Farrar JJ, Nguyen VV, et al. Dengue. N Engl J Med. 2012;366(15):1423–1432. doi:10.1056/NEJMra1110265
  • Tirado SM, Yoon KJ. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 2003;16(1):69–86. doi:10.1089/088282403763635465
  • Humphrey MB, Nakamura MC. A comprehensive review of immunoreceptor regulation of osteoclasts. Clin Rev Allergy Immunol. 2016;51(1):48–58. doi:10.1007/s12016-015-8521-8
  • Langerak T, Mumtaz N, Tolk VI, et al. The possible role of cross-reactive dengue virus antibodies in Zika virus pathogenesis. PLoS Pathog. 2019;15(4):e1007640. doi:10.1371/journal.ppat.1007640
  • van der Eerden BC, Hoenderop JG, de Vries TJ, et al. The epithelial Ca2+channel TRPV5 is essential for proper osteoclastic bone resorption. Proc Natl Acad Sci U S A. 2005;102(48):17507–17512. doi:10.1073/pnas.0505789102
  • Anfasa F, Siegers JY, van der Kroeg M, et al. Phenotypic differences between Asian and African lineage Zika viruses in human neural progenitor cells. mSphere. 2017;2(4). doi:10.1128/mSphere.00292-17
  • Both T, Zillikens MC, Schreuders-Koedam M, et al. Hydroxychloroquine affects bone resorption both in vitro and in vivo. J Cell Physiol. 2018;233(2):1424–1433. doi:10.1002/jcp.26028
  • Brum AM, van der Leije CS, Schreuders-Koedam M, et al. Identification of chloride intracellular channel protein 3 as a novel gene affecting human bone formation. JBMR Plus. 2017;1(1):16–26. doi:10.1002/jbm4.10003
  • Bruedigam C, Driel M, Koedam M, et al. Basic techniques in human mesenchymal stem cell cultures: differentiation into osteogenic and adipogenic lineages, genetic perturbations, and phenotypic analyses. Curr Protoc Stem Cell Biol. 2011; Chapter 1:Unit1H 3. doi:10.1002/9780470151808
  • Flipse J, Diosa-Toro MA, Hoornweg TE, et al. Antibody-Dependent enhancement of dengue virus infection in primary human macrophages; balancing higher fusion against antiviral responses. Sci Rep. 2016;6(29201). doi:10.1038/srep29201
  • Huang YL, Chen ST, Liu RS, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94(9):1025–1037. doi:10.1007/s00109-016-1409-0
  • Villasante A, Robinson ST, Cohen AR, et al. Human serum enhances biomimicry of engineered tissue models of bone and cancer. Front Bioeng Biotechnol. 2021;9:658472. doi:10.3389/fbioe.2021.658472
  • Foo SS, Chen W, Chan Y, et al. Asian Zika virus strains target CD14(+) blood monocytes and induce M2-skewed immunosuppression during pregnancy. Nat Microbiol. 2017;2(11):1558–1570. doi:10.1038/s41564-017-0016-3
  • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–795. doi:10.1172/JCI59643
  • Chen W, Foo SS, Rulli NE, et al. Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. Proc Natl Acad Sci U S A. 2014;111(16):6040–6045. doi:10.1073/pnas.1318859111
  • Morrison TE, Whitmore AC, Shabman RS, et al. Characterization of Ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. J Virol. 2006;80(2):737–749. doi:10.1128/JVI.80.2.737-749.2006
  • Chen W, Foo SS, Sims NA, et al. Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends Microbiol. 2015;23(1):35–43. doi:10.1016/j.tim.2014.09.005
  • Morrison TE, Oko L, Montgomery SA, et al. A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am J Pathol. 2011;178(1):32–40. doi:10.1016/j.ajpath.2010.11.018
  • Sissoko D, Malvy D, Ezzedine K, et al. Post-epidemic Chikungunya disease on Reunion Island: course of rheumatic manifestations and associated factors over a 15-month period. PLoS Negl Trop Dis. 2009;3(3):e389. doi:10.1371/journal.pntd.0000389
  • Gohda J, Ma Y, Huang Y, et al. HIV-1 replicates in human osteoclasts and enhances their differentiation in vitro. Retrovirology. 2015;12:12. doi:10.1186/s12977-015-0139-7
  • Raynaud-Messina B, Bracq L, Dupont M, et al. Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proc Natl Acad Sci USA. 2018;115(11):E2556–E2E65. doi:10.1073/pnas.1713370115
  • Rice ME, Galang RR, Roth NM, et al. Vital signs: Zika-associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection - U.S. territories and freely associated states, 2018. MMWR Morb Mortal Wkly Rep. 2018;67(31):858–867. doi:10.15585/mmwr.mm6731e1
  • Sahiner F, Sig AK, Savasci U, et al. Zika Virus-associated ocular and Neurologic disorders: The emergence of New evidence. Pediatr Infect Dis J. 2017;36(12):e341–e3e6. doi:10.1097/INF.0000000000001689
  • Dias MS, Samson T, Rizk EB, et al. Section on neurologic surgery SOP, et al. identifying the misshapen head: craniosynostosis and related disorders. Pediatrics. 2020;146(3). doi:10.1542/peds.2020-015511
  • Kajdic N, Spazzapan P, Velnar T. Craniosynostosis - recognition, clinical characteristics, and treatment. Bosn J Basic Med Sci. 2018;18(2):110–116. doi:10.17305/bjbms.2017.2083
  • von der Hagen M, Pivarcsi M, Liebe J, et al. Diagnostic approach to microcephaly in childhood: a two-center study and review of the literature. Dev Med Child Neurol. 2014;56(8):732–741. doi:10.1111/dmcn.12425
  • Hamdan AL, Nabulsi MM, Farhat FT, et al. When bone becomes marble: Head and neck manifestations of osteopetrosis. Paediatr Child Health. 2006;11(1):37–40. doi:10.1093/pch/11.1.37
  • Fujimura Y, Hotokezaka H, Ohara N, et al. The hemoglobin receptor protein of porphyromonas gingivalis inhibits receptor activator NF-kappaB ligand-induced osteoclastogenesis from bone marrow macrophages. Infect Immun. 2006;74(5):2544–2551. doi:10.1128/IAI.74.5.2544-2551.2006
  • Berardi S, Corrado A, Maruotti N, et al. Osteoblast role in the pathogenesis of rheumatoid arthritis. Mol Biol Rep. 2021;48(3):2843–2852. doi:10.1007/s11033-021-06288-y
  • Soysa NS, Alles N, Aoki K, et al. Osteoclast formation and differentiation: an overview. J Med Dent Sci. 2012;59(3):65–74.
  • Xing L, Xiu Y, Boyce BF. Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J Orthop. 2012;3(12):212–222. doi:10.5312/wjo.v3.i12.212
  • Oursler MJ. Recent advances in understanding the mechanisms of osteoclast precursor fusion. J Cell Biochem. 2010;110(5):1058–1062. doi:10.1002/jcb.22640
  • Kim JM, Lee K, Jeong D. Selective regulation of osteoclast adhesion and spreading by PLCgamma/PKCalpha-PKCdelta/RhoA-Rac1 signaling. BMB Rep. 2018;51(5):230–235. doi:10.5483/BMBRep.2018.51.5.198
  • Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases. 2011;2(3):117–130. doi:10.4161/sgtp.2.3.16453
  • Chellaiah MA. Regulation of actin ring formation by rho GTPases in osteoclasts. J Biol Chem. 2005;280(38):32930–32943. doi:10.1074/jbc.M500154200
  • de Vries TJ, Mullender MG, van Duin MA, et al. The Src inhibitor AZD0530 reversibly inhibits the formation and activity of human osteoclasts. Mol Cancer Res. 2009;7(4):476–488. doi:10.1158/1541-7786.MCR-08-0219