5,091
Views
49
CrossRef citations to date
0
Altmetric
Research Article

Confirmation of fifth Candida auris clade by whole genome sequencing

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2405-2411 | Received 17 Jul 2022, Accepted 12 Sep 2022, Published online: 18 Oct 2022

References

  • Jeffery-Smith A, Taori SK, Schelenz S, et al. Candida auris: a review of the literature. Clin Microbiol Rev. 2018;31(1):e00029–17.
  • Du H, Bing J, Hu T, et al. Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020;16(10):e1008921.
  • Lockhart SR. Candida auris and multidrug resistance: defining the new normal. Fungal Genet Biol. 2019;131:103243.
  • Satoh K, Makimura K, Hasumi Y, et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53(1):41–44.
  • Rhodes J, Fisher MC. Global epidemiology of emerging Candida auris. Curr Opin Microbiol. 2019;52:84–89.
  • Chow NA, Muñoz JF, Gade L, et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio. 2020;11(2):e03364–19.
  • Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–140.
  • Chow NA, de Groot T, Badali H, et al. Potential fifth clade of Candida auris, Iran, 2018. Emerg Infect Dis. 2019;25(9):1780–1781.
  • Chowdhary A, Prakash A, Sharma C, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018;73(4):891–899.
  • Sekizuka T, Iguchi S, Umeyama T, et al. Clade II Candida auris possess genomic structural variations related to an ancestral strain. PLoS One. 2019;14(10):e0223433.
  • Kwon YJ, Shin JH, Byun SA, et al. Candida auris clinical isolates from South Korea: identification, antifungal susceptibility, and genotyping. J Clin Microbiol. 2019;57(4):e01624–18.
  • Chaabane F, Graf A, Jequier L, et al. Review on antifungal resistance mechanisms in the emerging pathogen Candida auris. Front Microbiol. 2019;10:2788.
  • Li D, Wang Y, Hu W, et al. Application of machine learning classifier to Candida auris drug resistance analysis. Front Cell Infect Microbiol. 2021;11:742062.
  • Healey KR, Kordalewska M, Jiménez Ortigosa C, et al. Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrob Agents Chemother. 2018;62(10):e01427–18.
  • Rybak JM, Muñoz JF, Barker KS, et al. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio. 2020;11(3):e00365–20.
  • Li J, Coste AT, Liechti M, et al. Novel ERG11 and TAC1b mutations associated with azole resistance in Candida auris. Antimicrob Agents Chemother. 2021;65(5):e02663–20.
  • Chowdhary A, Kumar VA, Sharma C, et al. Multidrug-resistant endemic clonal strain of Candida auris in India. Eur J Clin Microbiol Infect Dis. 2014;33(6):919–926.
  • Ambaraghassi G, Dufresne PJ, Dufrense SF, et al. Identification of Candida auris by use of the updated Vitek 2 yeast identification system, version 8.01: a multilaboratory evaluation study. J Clin Microbiol. 2019;57(11):e00884–19.
  • Munoz JF, Welsh RM, Shea T, et al. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics. 2021;218(1):iyab029. doi:10.1093/genetics/iyab029.
  • Abastabar M, Maghani I, Ahangarkani F, et al. Candida auris otomycosis in Iran and review of recent literature. Mycoses. 2019;62(2):101–105.
  • Mirhendi H, Charsizadeh A, Aboutalebian S, et al. South Asian (clade I) Candida auris meningitis in a paediatric patient in Iran with a review of the literature. Mycoses. 2022;65(2):134–139.
  • Safari F, Madani M, Badali H, et al. Chronic autochthonous fifth clade case of Candida auris Otomycosis in Iran. Mycopathologia. 2022;187(1):121–127.
  • Armaki MT, Omran SM, Kiakojuri K, et al. First fluconazole-resistant Candida auris isolated from fungal otitis in Iran. Curr Med Mycol. 2021;7(1):51–54.
  • Park J, Youssefian L, Khodavaisy S, et al. Chronic mucocutaneous candidiasis due to Candida auris and non-albicans Candida species in a family with a mild TP63-associated ectodermal dysplasia. [abstract]. J Invest Dermatol. 2022;142(8):S84.
  • Prakash A, Sharma C, Singh A, et al. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clin Microbiol Infect. 2016;22(3):277. e1-9.
  • de Groot T, Puts Y, Berrio I, et al. Development of Candida auris short tandem repeat typing and Its application to a global collection of isolates. mBio. 2020;11(1):e02971–19.
  • de Valk HA, Meis JF, Curfs IM, et al. Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of Aspergillus fumigatus isolates. J Clin Microbiol. 2005;43(8):4112–4120.
  • Afgan E, Baker D, Batut B, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:537–544.
  • Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26(5):589–595.
  • Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. Preprint at ArXiv. 2012: 1207–3907.
  • Subramanian S, Ramasamy U, Chen D. VCF2PopTree: a client-side software to construct population phylogeny from genome-wide SNPs. Peer J. 2019;7:e8213.
  • Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027.
  • Skinner ME, Uzilov AV, Stein LD, et al. JBrowse: a next-generation genome browser. Genome Res. 2009;19(9):1630–1638.
  • CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved Standard 3rd Edition. CLSI Document M27-A3. Clinical and Laboratory Standards Institute Wayne, PA; 2008
  • Welsh RM, Misas E, Forsberg K, et al. Candida auris whole-genome sequence benchmark dataset for phylogenomic pipelines. J Fungi (Basel). 2021;7(3):214. doi:10.3390/jof7030214.
  • Kakeya H, Miyazaki Y, Miyazaki H, et al. Genetic analysis of azole resistance in the Darlington strain of Candida albicans. Antimicrob Agents Chemother. 2000;44(11):2985–2990.
  • Xu Y, Chen L, Li C. Susceptibility of clinical isolates of Candida species to fluconazole and detection of Candida albicans ERG11 mutations. J Antimicrob Chemother. 2008;61(4):798–804.
  • Hall RA, Gow NA. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol Microbiol. 2013;90(6):1147–1161.
  • Bruno M, Kersten S, Bain JM, et al. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat Microbiol. 2020;5(12):1516–1531.
  • Gabaldon T, Martin T, Marcet-Houben M, et al. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics. 2013;14:623.
  • Kean R, Delaney C, Sherry L, et al. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere. 2018;3(4):e00334–18.
  • Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio. 2019;10(4):e01397–19.
  • Arora P, Singh P, Wang Y, et al. Environmental isolation of Candida auris from the coastal wetlands of Andaman islands, India. mBio. 2021;12(2):e03181–20.