2,275
Views
9
CrossRef citations to date
0
Altmetric
Coronaviruses

Pathogen-host adhesion between SARS-CoV-2 spike proteins from different variants and human ACE2 studied at single-molecule and single-cell levels

ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2658-2669 | Received 19 Jun 2022, Accepted 21 Sep 2022, Published online: 04 Nov 2022

References

  • Liang K-H, Shih-Han Ko PYC, Chou Y-C, et al. Antibody cocktail effective against variants of SARS-CoV-2. J Biomed Sci. 2021;28:80, doi:10.1186/s12929-021-00777-9.
  • Yang J, Petitjean SJL, Koehler M, et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun. 2020;11:4541, doi:10.1038/s41467-020-18319-6.
  • Li M, Lou F, Fan H. SARS-CoV-2 variants of concern Delta: a great challenge to prevention and control of COVID-19. Signal Transduct Target Ther. 2021;6:349, doi:10.1038/s41392-021-00767-1.
  • Pei P, Qin H, Chen J, et al. Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein. Brief Bioinform. 2021;22; doi:10.1093/bib/bbab243.
  • Zumla A, Chan JFW, Azhar EI, et al. Coronaviruses – drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327–347.
  • Tian F, Liang Sun BT, Shi S, et al. N501y mutation of spike protein in SARS-CoV-2 strengthens its 2 binding to receptor ACE2. Elife. 2021;10:e69091.
  • Yan R, Yuanyuan Z, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–1448.
  • Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120–134.
  • Gu H, Chen Q, Yang G, et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science. 2020;369:1603–1607.
  • Yuan M, Huang D, Lee C-CD, et al. Structural and functional ramifcations of antigenic drift in recent SARS-CoV-2 variants. Science. 2021;373:818–823.
  • Motozono C, Toyoda M, Zahradnik J, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29:1124–1136.e11.
  • Liu Z, Van Blargan LA, Bloyet LM, et al. Identifcation of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe. 2021;29:477–488.e4.
  • Chen Y, Chen L, Yin S, et al. The third dose of CoronVac vaccination induces broad and potent adaptive immune responses that recognize SARS-CoV-2 Delta and Omicron variants. Emerg Microbes Infect. 2022;11:1524–1536. doi:10.1080/22221751.2022.2081614.
  • Espenhain L, Funk T, Overvad M, et al. Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, December 2021. Eurosurveillance. 2021;26; doi:10.2807/1560-7917.Es.2021.26.50.2101146.
  • Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell. 2022;185:2422–2433.e13. doi:10.1016/j.cell.2022.06.005.
  • Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 2022;185:467–484.e15. doi:10.1016/j.cell.2021.12.046.
  • Han P, Li L, Liu S, et al. Receptor binding and complex structures of human ACE2 to spike RBD from Omicron and Delta SARS-CoV-2. Cell. 2022;185:630–640.e10. doi:10.1016/j.cell.2022.01.001.
  • Ravichandran S, Coyle EM, Klenow L, et al. Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits. Sci Transl Med. 2020;12:eabc3539.
  • Koehler M, Ray A, Moreira RA, et al. Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants. Nat Commun. 2021;12:6977. doi:10.1038/s41467-021-27325-1.
  • Petitjean SJL, Chen W, Koehler M, et al. Multivalent 9-O-acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection. Nat Commun. 2022;13:2564, doi:10.1038/s41467-022-30313-8.
  • Wang Y, Liu C, Zhang C, et al. Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nat Commun. 2022;13:871. doi:10.1038/s41467-022-28528-w.
  • Tai L, Zhu G, Yang M, et al. Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proc Natl Acad Sci. 2021;118:e2112703118. doi:10.1073/pnas.2112703118.
  • Lv Z, Deng Y-Q, Ye Q, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science. 2020;369:1505–1509. doi:10.1126/science.abc5881.
  • Zhang X, Kou X, Zhang W, et al. Identification of the new type of G-Quadruplex with multiple vacant sites in human telomeric DNA. CCS Chemistry. 2022;4:3023–3035. doi:10.31635/ccschem.021.202101436.
  • He C, Hu C, Hu X, et al. Direct observation of the reversible two-state unfolding and refolding of an α/β protein by single-molecule atomic force microscopy. Angew Chemie – Int Ed. 2015;54:9921–9925.
  • Moghaddar M, Radman R, Macreadie I. Severity, pathogenicity and transmissibility of Delta and Lambda variants of SARS-CoV-2, toxicity of spike protein and possibilities for future prevention of COVID-19. Microorganisms. 2021;9:2167; doi:10.3390/microorganisms9102167.
  • Müller DJ, Helenius J, Alsteens D, et al. Force probing surfaces of living cells to molecular resolution. Nat Chem Biol. 2009;5:383–390.
  • Maynard SA, Gelmi A, Stacey C, et al. Nanoscale molecular quantification of stem cell–hydrogel interactions. ACS Nano. 2020;14:17321–17332. doi:10.1021/acsnano.0c07428.
  • Helenius J, Heisenberg CP, Gaub HE, et al. Single-cell force spectroscopy. J Cell Sci. 2008;121:1785–1791.
  • Puckert C, Tomaskovik-Crook E, Gambhir S, et al. Molecular interactions and forces of adhesion between single human neural stem cells and gelatin methacrylate hydrogels of varying stiffness. Acta Biomater. 2020;106:156–169.
  • Bharadwaj M, Strohmeyer N, Colo GP, et al. αV-class integrins exert dual roles on α5β1 integrins to strengthen adhesion to fibronectin. Nat Commun. 2017;8:14348. doi:10.1038/ncomms14348.
  • Spoerri PM, Zhiqi Sun NS, Fässler R, et al. Protease-activated receptor signalling initiates α5β1-integrin-mediated adhesion in non-haematopoietic cells. Nat Mater. 2020;19:218–226. doi:10.1038/s41563-019-0580-4.
  • Klasse PJ, Moore JP. Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. Elife. 2020;9. doi:10.7554/eLife.57877.
  • Prompetchara E, Tanapat Palaga CK. Immune responses in COVID-19 and potential vaccines lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:1–9. doi:10.12932/AP-200220-0772.
  • Valdez-Cruz NA, Clara Espitia EGH, et al. Integrative overview of antibodies against SARS CoV 2 and their possible applications in COVID 19 prophylaxis and treatment. Microb Cell Factories. 2021;20:32. doi:10.1186/s12934-021-01526-1.
  • Jhun H, Park HY, Hisham Y, et al. SARS-CoV-2 Delta (B.1.617.2) variant: a unique T478K mutation in receptor binding motif (RBM) of Spike Gene. Immune Netw. 2021;21:e32, doi:10.4110/in.2021.21.e32.
  • Zhang JZ, Yeh H-W, Walls AC., et al. Thermodynamically coupled biosensors for detecting neutralizing antibodies against SARS-CoV-2 variants. Nat Biotechnol. 2022;40:1336–1340. doi:10.1038/s41587-022-01280-8.
  • Kozminsky M, Carey TR, Sohn LL. DNA-directed patterning for versatile validation and characterization of a lipid-based nanoparticle model of SARS-CoV-2. Adv Sci. 2021;8:2101166.
  • Ai J, Wang X, He X, et al. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host Microbe. 2022;30:1077–1083.e4. doi:10.1016/j.chom.2022.05.001.
  • Hansen J, Baum A, Pascal KE, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. 2020;369:1010–1014. doi:10.1126/science.abd0827.
  • Omotuyi O, Olubiyi O, Nash O, et al. SARS-CoV-2 Omicron spike glycoprotein receptor binding domain exhibits super-binder ability with ACE2 but not convalescent monoclonal antibody. Comput Biol Med. 2022;142:105226. doi:10.1016/j.compbiomed.2022.105226.
  • Wang X, Zhao X, Song J, et al. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerg Microbes Infect. 2022;11:477–481. doi:10.1080/22221751.2022.2030200.
  • Bertoglio F, Fühner V, Ruschig M, et al. A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations. Cell Reports. 2021;36:109433. doi:10.1016/j.celrep.2021.109433.
  • Zhou T, Wang L, Misasi J, et al. Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science. 2022;376:eabn8897. doi:10.1126/science.abn8897.
  • Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593:130–135. doi:10.1038/s41586-021-03398-2.
  • Goher SS, Ali F, Amin M. The Delta variant mutations in the receptor binding domain of SARS-CoV-2 show enhanced electrostatic interactions with the ACE2. Med Drug Discov. 2022;13:100114, doi:10.1016/j.medidd.2021.100114.
  • Rankl C, Kienberger F, Wildling L, et al. Multiple receptors involved in human rhinovirus attachment to live cells. Proc Natl Acad Sci. 2008;105:17778–17783. doi:10.1073/pnas.0806451105.
  • Qiao B, Olvera de la Cruz M. Enhanced binding of SARS-CoV-2 spike protein to receptor by distal polybasic cleavage sites. ACS Nano. 2020;14:10616–10623. doi:10.1021/acsnano.0c04798.
  • Gurung AB, Ali MA, Lee J, et al. Structural and functional insights into the major mutations of SARS-CoV-2 spike RBD and its interaction with human ACE2 receptor. J King Saud Univ – Sci. 2022;34:101773, doi:10.1016/j.jksus.2021.101773.
  • Kim S, Liu Y, Lei Z, et al. Differential interactions between human ACE2 and spike RBD of SARS-CoV-2 variants of concern. bioRxiv: The Preprint Server for Biology. 2021; doi:10.1101/2021.07.23.453598.
  • Shi S, Wang Z, Deng Y, et al. Combination of click chemistry and enzymatic ligation for stable and efficient protein immobilization for single-molecule force spectroscopy. CCS Chem. 2022;4:598–604. doi:10.31635/ccschem.021.202100779.
  • Zhang X, Chen J, Li E, et al. Ultrahigh adhesion force between silica-binding peptide SB7 and glass substrate studied by single-molecule force spectroscopy and molecular dynamic simulation. Front Chem. 2020;8:600918, doi:10.3389/fchem.2020.600918.
  • Bell GI. Models for the specific adhesion of cells to cells. Science. 1978;200:618–627. doi:10.1126/science.347575.
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.
  • Huang J, Rauscher S, Nawrocki G, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14:71–73. doi:10.1038/nmeth.4067.
  • Lee J, Cheng X, Swails JM, et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput. 2016;12:405–413.
  • Lemkul JA, Bevan DR. Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. J Phys Chem B. 2010;114:1652–1660.