3,388
Views
5
CrossRef citations to date
0
Altmetric
Research Article

CD1d facilitates African swine fever virus entry into the host cells via clathrin-mediated endocytosis

, , , , , , , , , , & show all
Article: 2220575 | Received 02 Apr 2023, Accepted 30 May 2023, Published online: 22 Jun 2023

References

  • Alonso C, Borca M, Dixon L, et al. Ictv virus taxonomy profile: asfarviridae. J Gen Virol. 2018 May;99(5):613–614.
  • Xian Y, Xiao C. The structure of ASFV advances the fight against the disease. Trends Biochem Sci. 2020 Apr;45(4):276–278.
  • Alejo A, Matamoros T, Guerra M, et al. A proteomic atlas of the African swine fever virus particle. J Virol. 2018 Dec 1;92(23):e01293–18.
  • Wang G, Xie M, Wu W, et al. Structures and functional diversities of ASFV proteins. Viruses. 2021 Oct 21;13(11):11.
  • Dixon LK, Chapman DA, Netherton CL, et al. African swine fever virus replication and genomics. Virus Res. 2013 Apr;173(1):3–14.
  • Dixon L, Islam M, Nash R, et al. African swine fever virus evasion of host defences. Virus Res. 2019;266:25–33.
  • Dixon LK, Sun H, Roberts H. African swine fever. Antiviral Res. 2019 May;165:34–41.
  • Wang N, Zhao D, Wang J, et al. Architecture of African swine fever virus and implications for viral assembly. Science. 2019 Nov 1;366(6465):640–644.
  • Galindo I, Alonso C. African swine fever virus: a review. Viruses. 2017 May 10;9(5):5.
  • Andrés G, García-Escudero R, Viñuela E, et al. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. J Virol. 2001 Aug;75(15):6758–6768.
  • Revilla Y, Perez-Nunez D, Richt JA. African swine fever virus biology and vaccine approaches. Adv Virus Res. 2018;100:41–74.
  • Kollnberger SD, Gutierrez-Castaneda B, Foster-Cuevas M, et al. Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. J Gen Virol. 2002 Jun;83(Pt 6):1331–1342.
  • Liu Q, Ma B, Qian N, et al. Structure of the African swine fever virus major capsid protein p72. Cell Res. 2019 Nov;29(11):953–955.
  • Gómez-Puertas P, Rodríguez F, Oviedo JM, et al. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol. 1996 Aug;70(8):5689–5694.
  • Zsak L, Onisk DV, Afonso CL, et al. Virulent African swine fever virus isolates are neutralized by swine immune serum and by monoclonal antibodies recognizing a 72-kDa viral protein. Virology. 1993 Oct;196(2):596–602.
  • Blaising J, Levy PL, Gondeau C, et al. Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cell Microbiol. 2013 Nov;15(11):1866–1882.
  • Wang H, Jiang C. Influenza A virus H5N1 entry into host cells is through clathrin-dependent endocytosis. Sci China C Life Sci. 2009 May;52(5):464–469.
  • Daecke J, Fackler OT, Dittmar MT, et al. Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J Virol. 2005 Feb;79(3):1581–1594.
  • ] Kalia M, Khasa R, Sharma M, et al. Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol. 2013 Jan;87(1):148–162.
  • Cureton DK, Massol RH, Whelan SP, et al. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 2010 Sep 30;6(9):e1001127.
  • Shi R, Hou L, Wei L, et al. Involvement of adaptor proteins in clathrin-mediated endocytosis of virus entry. Microb Pathog. 2021 Dec;161(Pt A):105278.
  • Conner SD, Schmid SL. Differential requirements for AP-2 in clathrin-mediated endocytosis. J Cell Biol. 2003 Sep 1;162(5):773–779.
  • Maxfield FR. Role of endosomes and lysosomes in human disease. Cold Spring Harb Perspect Biol. 2014 May 1;6(5):a016931.
  • Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Csh Perspect Biol. 2014 Nov;6(11):11.
  • Sanchez EG, Perez-Nunez D, Revilla Y. Mechanisms of entry and endosomal pathway of African swine fever virus. Vaccines (Basel). 2017 Nov 8;5(4):42.
  • Cuesta-Geijo MA, Garcia-Dorival I, Del Puerto A, et al. New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathog. 2022 Jan;18(1):e1009784.
  • Li J, Hu L, Liu Y, et al. Ddx19a senses viral RNA and mediates NLRP3-dependent inflammasome activation. J Immunol. 2015 Dec 15;195(12):5732–5749.
  • Zhao D, Liu R, Zhang X, et al. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg Microbes Infect. 2019;8(1):438–447.
  • Kang Li ZS, Jie S, Jiangnan L, et al. Construction of recombinant African swine fever virus stably expressing Gaussia luciferase and EGFP. Chinese Journal of Virology. 2021;37(5):1134.
  • Huang L, Liu H, Zhang K, et al. Ubiquitin-conjugating enzyme 2S enhances viral replication by inhibiting type I IFN production through recruiting USP15 to deubiquitinate TBK1. Cell Rep. 2020 Aug 18;32(7):108044.
  • King DP, Reid SM, Hutchings GH, et al. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. J Virol Methods. 2003 Jan;107(1):53–61.
  • Cubillos C, Gómez-Sebastian S, Moreno N, et al. African swine fever virus serodiagnosis: a general review with a focus on the analyses of African serum samples. Virus Res. 2013 2013/04/01/;173(1):159–167.
  • Gaudreault NN, Madden DW, Wilson WC, et al. African swine fever virus: an emerging DNA arbovirus. Front Vet Sci. 2020;7:215.
  • Simón-Mateo C, Andrés G, Viñuela E. Polyprotein processing in African swine fever virus: a novel gene expression strategy for a DNA virus. Embo j. 1993 Jul;12(7):2977–2987.
  • Alejo A, Andres G, Vinuela E, et al. The African swine fever virus prenyltransferase is an integral membrane trans-geranylgeranyl-diphosphate synthase. J Biol Chem. 1999 Jun 18;274(25):18033–9.
  • Barral DC, Brenner MB. CD1 antigen presentation: how it works. Nat Rev Immunol. 2007 Dec;7(12):929–941.
  • Hundal HS, Maxwell DL, Ahmed A, et al. Subcellular distribution and immunocytochemical localization of Na,K-ATPase subunit isoforms in human skeletal muscle. Mol Membr Biol. 1994 Oct-Dec;11(4):255–262.
  • Rai A, Pruitt S, Ramirez-Medina E, et al. Detection and quantification of African swine fever virus in MA-104 cells. Bio Protoc. 2021 Mar 20;11(6):e3955.
  • Rai A, Pruitt S, Ramirez-Medina E, et al. Identification of a continuously stable and commercially available cell line for the identification of infectious African Swine fever virus in clinical samples. Viruses. 2020 Jul 28;12(8):820.
  • Hernaez B, Alonso C. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J Virol. 2010 Feb;84(4):2100–2109.
  • Sánchez EG, Quintas A, Pérez-Núñez D, et al. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog. 2012;8(6):e1002754.
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003 Mar 6;422(6927):37–44.
  • Jones AT. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med. 2007 Jul–Aug;11(4):670–684.
  • Valdeira ML, Geraldes A. Morphological study on the entry of African swine fever virus into cells. Biol Cell. 1985;55(1–2):35–40.
  • Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis. J Gen Virol. 2002 Jul;83(Pt 7):1535–1545.
  • van Bergen En Henegouwen PM. Eps15: a multifunctional adaptor protein regulating intracellular trafficking. Cell Commun Signal. 2009 Oct 8;7:24.
  • Klapisz E, Sorokina I, Lemeer S, et al. A ubiquitin-interacting motif (UIM) is essential for Eps15 and Eps15R ubiquitination. J Biol Chem. 2002 Aug 23;277(34):30746–30753.
  • Fallon L, Belanger CM, Corera AT, et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol. 2006 Aug;8(8):834–842.
  • Rodríguez I, Nogal ML, Redrejo-Rodríguez M, et al. The African swine fever virus virion membrane protein pE248R is required for virus infectivity and an early postentry event. J Virol. 2009 Dec;83(23):12290–12300.
  • Matamoros T, Alejo A, Rodriguez JM, et al. African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration. Mbio. 2020 Aug 11;11(4):e00789–20.
  • Li M, Chen L, Tian S, et al. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res. 2017 May;27(5):865–874.
  • Rai A, Pruitt S, Ramirez-Medina E, et al. Identification of a continuously stable and commercially available cell line for the identification of infectious African swine fever virus in clinical samples. Viruses. 2020 Jul 28;12(8):820.
  • Kwon HI, Do DT, Van Vo H, et al. Development of optimized protocol for culturing African swine fever virus field isolates in MA104 cells. Can J Vet Res. 2022 Oct;86(4):261–268.
  • Gao Y, Xia T, Bai J, et al. African swine fever virus exhibits distinct replication defects in different cell types. Viruses. 2022 Nov 26;14(12):2642.
  • Zhao G, Li T, Liu X, et al. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. J Biol Chem. 2022 Jan;298(1):101480.
  • Fukano K, Oshima M, Tsukuda S, et al. Ntcp oligomerization occurs downstream of the NTCP-EGFR Interaction during Hepatitis B Virus Internalization. J Virol. 2021 Nov 23;95(24):e0093821.
  • Iwamoto M, Saso W, Sugiyama R, et al. Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proc Natl Acad Sci USA. 2019 Apr 23;116(17):8487–8492.
  • Boulant S, Stanifer M, Lozach PY. Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. Viruses. 2015 Jun 2;7(6):2794–2815.